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Abstract

The research summarized in this report is the result of a two-year e�ort
that has focused on evaluating the viability of wavelet bases for the solu-
tion of partial di�erential equations. The primary objective for this work
has been to establish a foundation for hierarchical/wavelet simulation meth-
ods based upon numerical performance, computational e�ciency, and the
ability to exploit the hierarchical adaptive nature of wavelets. This work
has demonstrated that hierarchical bases can be e�ective for problems with
a dominant elliptic character. However, the strict enforcement of orthog-
onality was found to be less desirable than weaker semi-orthogonality or
bi-orthogonality for solving partial di�erential equations. This conclusion
has led to the development of a multi-scale linear �nite element based on
a hierarchical change of basis. The reproducing kernel particle method has
been found to yield extremely accurate phase characteristics for hyperbolic
problems while providing a convenient framework for multi-scale analyses.
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Chapter 1

Introduction

Wavelets are a relatively new mathematical tool that dissect data, functions,
and di�erential operators into components of di�erent frequency with a reso-
lution (in space or time) that is simultaneously matched to the scale of each
component. The use of wavelet bases for the solution of partial di�erential
equations (PDEs) has promised to deliver hierarchical solutions matched to
the scales of the physical problem. The application of wavelet bases to the
solution of partial di�erential equations has evolved to the point where there
are a number of competing formulations that include, but are not limited to
wavelet-Galerkin, wavelet-collocation, and reproducing kernel methods.

Despite the growing number of formulations and solution algorithms that
use wavelets, the �eld is still relatively new, and many technical issues remain.
The state of wavelet bases for solving partial di�erential equations is roughly
that of �nite element technology 20 years ago. That is to say there is great
promise in this approach, but there is a clear need for fundamental research
that characterizes the numerical and computational performance of wavelets
for the solution of partial di�erential equations. Before proceeding with a
historical perspective on wavelets and their application to partial di�erential
equations, a brief introduction to wavelets is presented �rst in words and
then using the mathematical formalisms of the wavelet community.

The objective for wavelet decompositions is to represent a function in
terms of multiple scales of resolution { particularly functions that are local
in both time and frequency (or space and wave number). A precise de�nition
of wavelets is somewhat elusive, but one of the best overall de�nitions is given
by Chui:20

13



14 CHAPTER 1. INTRODUCTION

The term \wavelets" has a very broad meaning, ranging from sin-
gular integral operators of the Calder�on type in harmonic analysis
to sub-band coding algorithms in signal processing, from coher-
ent states in quantum physics to spline analysis in approximation
theory, from multi-resolution transform in computer vision to a
multilevel approach in the numerical solution of partial di�eren-
tial equations, and so on.

To be a bit more precise, wavelets permit the representation of functions
in terms of a family of wavelet basis functions and their associated wavelet
coe�cients, i.e., f(x) =

P
aj;k (2

jx� k), where  (2jx� k) are the wavelets
and aj;k are the coe�cients. Wavelets are based on the application of trans-
lation ( (x) !  (x � k)), and dilation ( (x) !  (jx)). Here, j is the
dilation parameter and is understood to range over all the scales of interest,
while k indicates the translation and ranges over all possible integer trans-
lates (shifts). The construction of a wavelet begins with a dilation equation,
that is, a two-scale di�erence equation, and its solution which is typically
referred to as the scaling function, �. The wavelet at a given scale can be
expressed in terms of di�erences of scaling functions. With the de�nition of
wavelets in \words" out of the way, attention is turned to the mathematical
foundation for wavelets and multi-resolution analysis.

1.1 Multi-Resolution Analysis and Wavelets

The relationship between the scaling function or \mother" wavelet and the
wavelets themselves was suggested above, but the details of this relationship
were not made precise in a mathematical sense. The basic idea behind the
relationship hinges on a multi-resolution analysis whose goal is to break down
the original L2(IR) space into a sequence of nested subspaces. The multi-
scale representation of a function in L2(IR) (see Daubachies36) relies upon a
sequence of nested subspaces, Vj such that

f0g � � � � V�1 � V0 � V1 � V2 � � � � L2(IR): (1.1)

The nested subspaces have the following properties.

(a) The closure of the subspaces is dense in L2(IR),
S

j2Z Vj = L2(IR),
where Z is the set of integers.
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(b) The intersection of the subspaces is the trivial space,
T

j2Z Vj = f0g.

(c) The embedded spaces in a multi-resolution analysis are related by a
scaling law where

f(x) 2 Vj () f(2x) 2 Vj+1: (1.2)

(d) There exists a re�nable function whose integer translates form an or-
thogonal basis for the central space, V0, i.e.,

V0 = spanf�(x� k); k 2 Zg: (1.3)

This re�nable function is referred to as the scaling function.

In the nested sequence of spaces, the V0 subspace lies in the V1 subspace,
and so, any function in V0 may be expressed in terms of the scaling functions
in V1. That is,

�(x) =
1X

k=�1

ak�(2x� k); (1.4)

where k 2 Z, and ak are coe�cients that must be computed for the two-
scale di�erence relation. Equation (1.4) is the dilation equation, and it is
sometimes referred to as the re�nement equation.

In the more general case, for a given scale, j,

�j;k(x) = 2j=2�(2j=2x� k); (1.5)

where k represents the integer translates of the scaling function. In the
subsequent chapters, the dilation parameter, j, will be referred to frequently
as the \scale".

Example 1 Translation and Dilation
Two examples of translation and dilation are shown in Figure 1.1 for

the box and hat functions. Here, the box function is the piecewise constant
function,

�(x) =

(
1; if 0 � x � 1,
0; otherwise;

(1.6)
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(x)φ (2x)φ (2x-1)φ

(x)φ
(2x)φ

-
2
1φ(2x+1) -

2
1 (2x-1)φ

0 1 1/20 1
Box:

Hat:
10-1

Figure 1.1: Translation and dilation of the box function and hat function.

and satis�es �(x) = �(2x) + �(2x+ 1). Similarly, the hat function is

�(x) =

(
1� jxj; if 0 � jxj � 1,
0; otherwise;

(1.7)

and satis�es �(x) = 1

2
�(2x+1)+�(2x)+ 1

2
�(2x� 1) as its dilation equation.

Unlike the constant function, the hat function is not orthogonal to its integer
translates and requires an orthogonalization procedure for use as a scaling
function in the linear spline Battle-Lemarie' construction.36

Attention is now turned to the wavelets and their subspaces. The dif-
ference between subspaces at di�erent scales is key in the construction of
the wavelets and in multi-resolution analysis. For every scale, j, the wavelet
subspace, Wj, is de�ned to be the orthogonal complement of Vj in Vj+1 as

Vj+1 = Vj

M
Wj; (1.8)

where
L

indicates an orthogonal direct sum, Vj ? Wj, and Wj0 ? Wj for
j 0 6= j. From this, it follows that the wavelet spaces provide an orthogonal
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(x)φ (x)ψ

1/2 10
Haar

0 1
Box:

Figure 1.2: Box function and the corresponding Haar wavelet.

decomposition of L2(IR), M
j2Z

Wj = L2(IR): (1.9)

Like the scaling functions, the wavelets can be de�ned in terms of a two-
scale di�erence equation as

 j;k(x) = 2j=2 (2j=2x� k); (1.10)

where
Wj = spanf2j=2 (2jx� k); k 2 Zg: (1.11)

As an example of this relationship, the wavelet that corresponds to the box
function in Figure 1.1 is the Haar wavelet shown in Figure 1.2.

With the basics for the relationship between the wavelet and scaling func-
tion de�ned, attention is turned to the projection of a function onto a wavelet
basis. Here, Pjf represents the projection of a function, f onto the space Vj,
and Qjf represents the projection of f onto the wavelet space, Wj. Making
use of the orthogonality between Vj and Wj,

Pjf = Pj�1f +Qj�1f: (1.12)

Here, the projection operators are idempotent and orthogonal, i.e., P2
j = Pj,

Q2
j = Qj, and PjQj = QjPj = 0. In Eq. (1.12), the projection onto the

wavelet basis, Qj�1f constitutes the detail in the projected function that is
required to move from a coarse level to a level with higher resolution. From
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this point of view, multi-resolution decomposition breaks L2(IR) into a series
of orthogonal subspaces at varying resolution. At each level of resolution, j,
a function in L2(IR) may be represented in terms of the scaling functions at
scale j, or in terms of scaling functions and wavelets at scale j � 1.

Example 2 Projections

As a simple example, consider the projection of f(x) = sin(�x) onto V0
with the scaling function being the \box" function de�ned by Eq. (1.6), and
0 � x � 1. The projection onto this function is simply

P0f(x) =
Z 1

0
sin(�x)�(x)dx =

2

�
; (1.13)

and is shown in Figure 1.3 as the Scale-0 projection. The amplitude of the
constant function, P0f(x) is �=2 which is the area under the half-sine wave.

Similarly, the result of projecting onto the next �ner grid associated with
V1 yields P1f(x) = 2

�
�(2x) + 2

�
�(2x � 1). This is shown as the Scale-1

projection in Figure 1.3, and again the area is preserved in the orthogonal
projection onto V1. Note that both the Scale-0 and Scale-1 projections yield a
\top-hat" representation of the half-sine wave, albeit a top-hat representation
with the area equal to that under the half-sine wave.

Subsequent projections onto increasingly larger spaces yields more accu-
rate representations of the original sine function. Between any two scales, the
di�erence between the discrete functions is clearly seen to be the projection
onto the space associated with the Haar wavelet at a given scale. For exam-
ple, to move from Scale-2 to Scale-3, the Q2f(x) projection may be computed
directly using the Haar wavelet rather than the box functions at Scale-3, i.e.,
P3f(x) = P2f(x) +Q2f(x).

This brief overview of scaling functions, wavelets and multi-resolution
analysis has been presented as background for the chapters that follow in
this report. Additional details on wavelet construction and multi-resolution
analysis may be found in Strang,88,89 Daubechies,35,36 Mallat,74 Meyer,77

Strichartz,93 Massopust,75,76 Williams,107 Graphs,44 Jawerth,54 and Chui.20

Attention is now turned to a review of the salient literature on the solution
of partial di�erential equations using wavelet bases.
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Figure 1.3: Multi-scale projection of f(x) = sin(�x) onto Vj, for j =
0; 1; 2; 3; 4.

1.2 Historical Perspective

The name \wavelet" or \ondelette" was coined in the early 1980s by French
researchers Morlet, Arens, Fourgeua, Giard and Grossman.47,79,80 However,
functions with the attributes of wavelets have been known for almost 100
years. Meyer77 points out that there are seven primary origins for wavelets
that date from around 1930 with the Haar wavelet dating back to 1909.
However, the literature from this era does not use the term \wavelet", and
it has been asserted that this work did not explicitly include the concepts of
multi-resolution analysis.

A brief overview of some of the current literature on wavelet based ap-
proaches to solving is presented in the subsequent sections. For a recent
survey of the current state of wavelets and multi-scale methods for solving
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partial di�erential equations, see Dahmen et al.30 and Dahmen.33 As a cau-
tionary word, the literature survey presented here is undoubtedly incomplete.
The rate at which publications on wavelets for partial di�erential equations
have appeared in the last two years has made it di�cult to present all of the
recent work in this area.

1.2.1 Finite Di�erence and Collocation Methods

There has been a variety of work with wavelets in both �nite di�erence and
in collocation methods. In 1994, Jameson53 introduced a �nite di�erence
scheme that used Daubachies wavelets. The use of Daubachies wavelets was
shown to yield a method that is equivalent to a �nite di�erence scheme
with adaptive grid re�nement where local re�nement is based upon the de-
composition of the local solution. In 1995, Harten49 demonstrated the use
of wavelets and multi-resolution analysis in the computation of the time-
evolution of hyperbolic conservation laws where the solution at each time
level was represented in terms of the wavelet coe�cients. This representa-
tion yielded a numerical solution strategy where data compression was built
into the method. In this work, the computational complexity of the time-
integration scheme was shown to be directly dependent on the rate of data
compression.

Cai and Wang13,14 (1996, 1993) used a cubic spline wavelet with a dis-
crete wavelet transform and collocation in their method for solving PDEs.
Adaptivity was introduced in the solution procedure by examination of the
amplitude of the wavelet coe�cients at a given time step. A similar ap-
proach has been taken by Vasilyev and Paolucci98,99 (1996,1997) where the
computational cost of their method has been demonstrated to be on the or-
der of the total number of collocation points and independent of the spatial
dimension of the problem. Holmstr�om50 (1996) introduced an interpolating
wavelet transform and used a threshold on the amplitude of the wavelet co-
e�cients to obtain adaptive solutions for hyperbolic PDEs. Holmstr�om also
demonstrated that the order of accuracy of the underlying �nite di�erence
discretization is preserved with the interpolating wavelet transform. More
recently, work by Cai and Zhang15 (1997) has extended the adaptive spline
wavelet method in order to treat reaction-di�usion equations for reacting
ows.
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1.2.2 Wavelet-Galerkin Methods

The wavelet-Galerkin method has received a great deal of attention over the
past 7-8 years. This is undoubtedly due to the generality that the Galerkin
method provides, and the ease with which alternative bases may be imple-
mented and tested. In this section, only a subset of the past work is reviewed,
beginning in 1990.

Glowinski et al.41 (1990) investigated the use of Daubechies wavelets to
both linear and nonlinear elliptic, parabolic and hyperbolic PDEs in one
space dimension. In this work, they concluded that wavelet bases compared
favorably with both traditional �nite elements and �nite di�erence methods,
combining aspects of both �nite element and spectral methods. In addition, it
was suggested that wavelet bases lend themselves naturally to multi-level so-
lution methods, but that the extension to multiple dimensions is non-trivial.
Although a multi-level approach is outlined, scaling functions are used for
the test and trial functions, and no direct use of the wavelets in the solution
algorithm is apparent.

Latto and Tenenbaum61 (1990) also used Daubachies wavelets (D636) in
the solution of equation with a Galerkin procedure. In this work, only the
Daubechies scaling functions were used in the solution method.

Glowinski et al.42 (1992) used a Galerkin procedure to solve an elliptic
PDE in two space dimensions with a \�ctitious domain" treatment for the
boundary, i.e., a uniform grid imposed over an irregular domain. Again,
Daubachies scaling functions were used as the basis, and it was determined
that the wavelet-Galerkin method is \comparable" to the classical �nite ele-
ment method. Also in 1992, Wells and Zhou104 considered the use of wavelets
to represent domains and boundary data for the solution of elliptic partial
di�erential equations. In 1993, Wells et al.105 introduced a penalty method
in conjunction with a �ctitious domain using the wavelet boundary represen-
tation.

Xu and Shann108 (1992) also used Daubachies wavelets in the solution of
one-dimensional elliptic problems using orthogonality of the wavelets in the
construction of an iterative solution strategy. Here, only Dirichlet boundary
conditions were considered and a change of basis was used to reduce the
operations count during the iterative solution procedure. The relationship
between the change of basis and a hierarchical basis (see Yserentant109) is
illustrated in this paper.

In 1993, Dahlke and Weinreich23 adapted biorthogonal wavelets to a
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Galerkin procedure for the solution of integral and partial di�erential equa-
tions. Biorthogonality refers to the fact that a scaling function and its dual
are used as generators for the multi-resolution analysis with orthogonality
between the primary and dual basis. More precisely, the orthogonality be-
tween Vm and Wm is relaxed with the requirement that Vm \ Wm = f0g
imposed instead. A wavelet-Galerkin procedure was considered, and it was
demonstrated that the biorthogonal wavelet bases yield sti�ness matrices
with uniformly bounded condition numbers. Dahlke and Kunoth,22 also in
1993, formulated a Galerkin method using biorthogonal wavelets and a two-
grid solution strategy that made use of the wavelets for the construction of
the restriction and prolongation operations.

Qian and Weiss84 (1993) used Daubachies scaling functions to solve a
Helmholtz equation in two dimensions. Here, the wavelet-Galerkin method
was demonstrated to converge when their �nite di�erence schemes failed to
do so.

The use of wavelets has also emerged in multi-level schemes and pre-
conditioners. An early example of this is demonstrated by Rieder et al.85

(1993) in the construction of a wavelet based version of Hackbusch's fre-
quency decomposition multi-grid method.48 A later paper by Rieder et al.86

(1994) considers the application of the wavelet-based frequency decompo-
sition multi-grid scheme and demonstrates that the wavelet reconstruction
yields a robust multi-level algorithm. Work by Glowinski et al.,43 also in
1994, used a wavelet multi-grid preconditioner with a wavelet-Galerkin dis-
cretization of Dirichlet boundary-value problems with the penalty/�ctitious
domain approach.

The work by Amaratunga and Williams1 (1994) used Daubachies D6,
D8, D10, and D12 scaling functions with a Galerkin procedure to generate
solutions to a Helmholtz equation on a periodic domain in one spatial domain.
Comparisons with �nite di�erence solutions illustrated that the \wavelet"
(actually scaling function) solutions converged more rapidly, albeit with an
additional cost for the boundary treatment.

In 1994, Ko and his co-workers58 developed triangular wavelet-based �nite
elements. In this work application to elliptic problems in a unit square is
demonstrated. However, no assessment of the computational complexity or
numerical performance of these elements was made.

Also in 1994, Urban97 demonstrated the construction and application
of divergence-free re�nable functions for incompressible ow. The use of
multi-level preconditioning yielded uniformly bounded condition numbers



1.2. HISTORICAL PERSPECTIVE 23

for Stokes ow in a lid-driven cavity. Later work by Dahmen, Kunoth
and Urban29 (1995) demonstrated that wavelet-Galerkin methods with shift-
invariant re�nable spaces yield trial spaces that satisfy the LBB (Ladysenkaya-
Babuska-Brezzi), i.e., the div-stability, condition. Here, a multi-scale decom-
position of the Schur complement of the discrete system is suggested for
time-dependent problems.

In related work, Kunoth59 (1994) developed a class of multi-level precondi-
tioners for elliptic boundary value problems. In 1995, Perrier and Charton82

demonstrated the solution of the incompressible, time-dependent, Navier-
Stokes equations using a wavelet-Galerkin method. A subsequent e�ort by
Charton and Perrier16 in 1996 used collocation for the non-linear advective
terms, and presented comparisons with calculations using a spectral code.
Identical results were obtained with both the wavelet and spectral approaches
although the computational e�ort for the wavelet code was higher. More re-
cently, Weiss103 (1997) has used the wavelet-Galerkin method for the study
of enstrophy transfers in two-dimensional turbulence in simple geometries.

Strela and Strang91 (1995) have constructed �nite element multi-wavelets
that have local support on \two intervals" with the wavelet subspace spanned
by wavelets with support over \three intervals". Simple examples of these el-
ements consist of the linear hat-function and its associated sombrero wavelet.
In their construction, the resulting �nite elements are orthogonal to the
wavelets and their translates, but the wavelets are only semi-orthogonal,
i.e., orthogonal across scales.

The treatment of boundary conditions { especially for more traditional
wavelets, i.e., Daubachies wavelets { has proven somewhat problematic. The
work by Monasse and Perrier78 (1995) is one of the few e�orts that has explic-
itly considered the implications of boundary conditions on multi-resolution
analysis in the context of solving partial di�erential equations.

In 1997, Walter102 extended the work of Strela and Strang by proposing a
Sobolev inner product to make the scaling functions orthogonal to their trans-
lates yielding simpli�ed decomposition { reconstruction algorithms. Later
work by Strela and Strang92 (1997) proposed a pseudo-biorthogonal comple-
tion of Hermite cubics for �nite elements as a means to obtain wavelets that
are \quick" to evaluate in a Galerkin procedure.

As an aside, Latto, Resniko� and Tenenbaum60 (1996) present a method
for evaluating \connection coe�cients" for wavelet-Galerkin applications.
Dahmen and Micchelli31 in 1993 also considered the evaluation of Galerkin
integrals that involve derivatives of wavelets and demonstrated that the eval-
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uation of the Galerkin integrals reduces to an eigenvector-moment problem.
The application of wavelets that are constructed to be biorthogonal in

the sense of a weighted inner product was demonstrated by Sweldens94 in
1996. For an inner product of the form < Lu; v >, it was shown that the
biorthogonal wavelets can diagonalize the operator. In Sweldens work, it was
suggested that a similar idea could be used for more general operators such
as the weak-form of the Helmholtz equation. ( Chapters 3 and 4 follow this
general line of reasoning.)

Work on element-by-element construction methods has been reported by
Dahmen and Stevenson34 (1997) with a focus on wavelets for unstructured
grids that yield uniformly bounded condition numbers for elliptic operators.
Here, the construction procedure relies strictly on a uniform re�nement of
the initial elements { a small penalty in the mesh generation process.

Fr�ohlich and Schneider39 (1997) have used operator-adapted biorthogonal
wavelets with a discrete wavelet transform and semi-implicit time integration
to yield a Petrov-Galerkin method with a diagonalized sti�ness operator.
These authors refers to this method as a \adaptive inversion scheme" since
there is no linear system to be solved at each time step.

As evidenced by the brief review of this wavelet-Galerkin literature, the
work in the early 1990s relied heavily on Daubechies wavelets. However, the
trend in recent years has been away from Daubachies wavelets and towards
wavelets that are constructed to yield speci�c algorithmic properties, e.g.,
diagonalize the sti�ness operator for elliptic problems. The strict use of
orthogonality has been relaxed32 yielding biorthogonal and semi-orthogonal
wavelets. This approach has led to the idea that wavelets may be most useful
for solving PDEs if they are used to simply \complete" a space, i.e., moving
from Vm�1 to Vm. These ideas have been used in the work reported on in the
subsequent chapters.

1.2.3 Reproducing Kernel Methods

An alternative to traditional grid-based approaches is the class of methods
based on moving least-squares, reproducing kernels, and partitions of unity.
An overview of the development of these methods is presented by Belytschko,
et al.3 The methods based upon reproducing kernels are of interest here
because they promise to deliver enhanced numerical performance on a broad
range of physical problems and provide a framework for incorporating multi-
resolution analysis in PDE solution algorithms.
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Liu and his co-workers have been developing Reproducing Kernel Par-
ticle Methods (RKPM) for a number of years and have demonstrated ap-
plications ranging from structural acoustics to large deformation mechanics
problems.66{68,71 In addition, Liu et al.65,73 have combined reproducing kernel
ideas with multi-resolution analysis using wavelets, permitting the decompo-
sition of discrete solutions into multiple scales. The application of RKPM
to structural dynamics has been demonstrated by Liu et al.70 in addition to
showing that the reproducing kernel interpolation functions satisfy necessary
consistency conditions. Uras et al.96 have applied RKPM to acoustics prob-
lems demonstrating that the dilation parameter in the window function may
be used to perform the RKPM analogue of \h-p adaptivity".

In a series of papers by Liu, Li and Belytschko62,64,72 moving least squares
reproducing kernel methods are developed beginning with the basic formu-
lation and continuing through a Fourier analysis and the incorporation of
wavelet packets. The possibility for RKPM to deliver equivalent rates of
convergence for the discrete functions and their derivatives has also been
explored by Li and Liu.63 The term \synchronized convergence" has been
coined for the situation when convergence rates for the functions and their
derivatives are of equal order. The application of RKPM to nearly incom-
pressible, hyper-elastic solids was considered by Chen et al.,17 while the treat-
ment of large deformation problems has been explored by Liu et al.55,69 The
enrichment of �nite element computations with RKPM has also been ad-
dressed permitting local regions of the computational domain to be treated
with RKPM while the global problem is treated with a standard �nite ele-
ment formulation.18

1.2.4 Multi-Level Methods

A topic closely related to the use of wavelets in the solution of partial di�er-
ential equations is the use of wavelets for multi-level preconditioners. The use
of multi-level splitting of �nite element spaces is discussed in Chapters 3 and
4 below. A brief and incomplete historical review of the relevant literature
is presented here.

In 1986, Yserentant109 introduced the use of multi-level splitting of �-
nite element spaces in the solution of elliptic partial di�erential equations.
Here, the principal idea was to replace the usual �nite element nodal basis
by an equivalent hierarchical basis. The e�ect of the change of basis is a
preconditioning of the discrete operator that results in uniformly bounded
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condition number in one-dimension, and a condition number that grows as
O(log(1=h2)) in two-dimensions. Later work by Yserentant111 (1990) com-
pared the hierarchical basis preconditioner to the Bramble, Pasciak and Xu12

(BPX) preconditioner and demonstrated that there is a close relationship be-
tween the two approaches.

The work by Tong, Chan and Kuo95 in 1991 used a nodal change of
basis as a preconditioner and demonstrated that their method yields condi-
tion numbers that grow as O(log2(1=h)) in two dimensions with condition
numbers of O(1) for their model Poisson problem. In 1992, Dahmen and
Kunoth28 derived general estimates for condition numbers for elliptic prob-
lems where a multi-level preconditioning is used. These estimates were used
to demonstrate that the BPX preconditioner yields uniformly bounded condi-
tion numbers. Ja�ard52 has also considered the use of wavelets that provide,
in e�ect, preconditioning for an elliptic PDE in the context of a Galerkin pro-
cedure. Here, diagonal preconditioning of the wavelet-based elliptic operator
is used to yield a uniformly bounded condition number.

A detailed theoretical treatment of �nite element multi-level methods may
be found in Oswald81 (1994). More recent work by Dahmen et al.30 (1997)
considers the relationship between multi-grid and multi-scale decompositions
and the use of multi-scale methods for physical problems with strong material
anisotropy.

1.2.5 Fast Wavelet Algorithms and Nonstandard Forms

Since about 1990, Beylkin and his colleagues have been developing wavelet
centric algorithms for a broad range of applications. A review of this work
is presented in a separate context because it is not easily categorized with
wavelet-Galerkin, wavelet-collocation, �nite di�erences, or multi-level meth-
ods.

In the early 1990s, Beylkin et al.10 introduced a new class of numerical
algorithms designed to achieve fast wavelet transforms. The importance of
orthogonality, vanishing moments and recursion in terms of fast algorithms
for multi-resolution analysis was presented by Beylkin5 in 1991. In 1992 {
1993, fast wavelet algorithms were developed for point-wise function multi-
plication,6 as well as for the representation of operators in terms of wavelet
bases with compact support.7,9

In 1995, Beylkin and Keiser8 reported on the application of the \fast"
wavelet algorithms to the adaptive solution of nonlinear partial di�erential
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equations where the sparse representation of operators was used to obtain
algorithms with O(N) complexity in the the wavelet coe�cients. The Ph.D.
thesis of Keiser56 provides a detailed presentation of nonstandard operator
representation and adaptive PDE solution strategies. Averbuch, Beylkin, et
al.2 (1995) addressed the solution of elliptic PDEs using the \fast" wavelet
algorithms and nonstandard operator representation. Recently, Beylkin and
Coult11 (1998) have focused on multi-resolution methods for the solution of
elliptic PDEs and eigenvalue problems.

1.3 Technical Issues

With the historical review of wavelets and PDEs in place, attention is turned
to some of the technical issues involved in applying discrete solution tech-
niques to PDEs. The accurate simulation of physical problems using grid-
based numerical schemes for wave propagation, advection and di�usion hinges
upon having a clear understanding of the constraining numerical errors, the
requisite grid resolution to minimize such errors, and su�cient computational
resources to e�ect solutions with the required grid scale. Examples of this
may be seen when attempting to simulate wave propagation in an acoustic
medium, or compute turbulent ow �elds via direct numerical simulation
(DNS) or large eddy simulation (LES).

In wave propagation (or pure advection), controlling the dispersive errors,
i.e., phase and group velocity errors, to within 5% requires a minimum of 8
to 10 grid points per wavelength for most numerical methods. Thus, the
computation of wave propagation problems is limited by the wavelength, or
frequency, that the grid can accurately represent. A failure to respect the
so-called Nyquist limit of the grid introduces deleterious aliasing e�ects that
corrupt the �delity of the simulation. Similarly, the calculation of turbulent
ows via DNS and LES is limited by the range of length scales that the
grid can accurately resolve. Simple turbulent channel ow requires a grid
resolution approximately proportional to the square of the Reynolds num-
ber,106 i.e., the attainable Reynolds number is limited by the resolving power
of the grid. The application of graded meshes is appropriate in boundary
layers or in regions of steep gradients (shocks) in compressible ow �elds
that are known a-priori. However, for problems with complex geometry and
coupled physics, graded, unstructured meshes ( or alternatively non-uniform
particle distributions) are limited by the conservative estimates made for the
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wavelengths that can be resolved.
In principle, the many variants of grid-based spatial adaptivity provide

an alternative to the conservative approach described above. However, cur-
rent approaches to adaptivity introduce many di�culties associated with
unstructured grids, error estimates, and dynamic load balancing for parallel
computations (particularly for distributed memory machines with large num-
bers of processors). In contrast, wavelets have the capability of decomposing
solutions into a set of coe�cients that depend upon scale and location, and
have properties that enable the automatic detection of regions where the so-
lution is non-smooth, i.e., built-in adaptivity. Wavelet bases for grid-based
simulation have promised the capability to compute multi-scale solutions
with potentially higher convergence rates than conventional �nite di�erence
and �nite element methods. However, the application of wavelet bases to
the grid-based solution of physical problems involving wave propagation, ad-
vection and di�usion is quite new, and there remain questions about the
numerical and computational performance of this approach.

1.3.1 Numerical Performance

Numerical performance is a broad term, and is de�ned here to include the
following: truncation error, consistency and stability, rate of convergence,
dispersive character, and spatial adaptivity. At this point in time, the nu-
merical performance of wavelet based methods, as de�ned here, has not been
rigorously established, although there has been some preliminary work sug-
gesting that the rate of convergence is comparable to both �nite di�erence
(FD) and �nite element (FE) methods.84

In this e�ort, the evaluation of the numerical performance was initiated
by attempting to collect baseline data for the performance of FD and FE
methods on the suite of model problems representative of the three classes
of problems of interest, i.e., wave propagation, advection and di�usion. Note
that these problems have been selected because they constitute the primary
components required to assemble more complicated solution methods for
nonlinear problems such as high-rate Lagrangian deformation problems or
high-Reynolds number, time-dependent, incompressible viscous ow.

Phase, group and amplitude errors constitute some of the most constrain-
ing numerical errors for simulating wave propagation and advection domi-
nated ows. A reduction in the number of grid points per wavelength can
provide a signi�cant computational advantage and permit the exploration of
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problems containing shorter wavelengths and higher frequencies, e.g., higher
Reynolds numbers. An example of this has been demonstrated by Chris-
ton19 where an optimized mass matrix leads to a factor of 4 reduction in
the required 1-D grid resolution for acoustic wave propagation - a factor of
64 in 3-D. The promise of wavelets is to deliver an even greater advantage
in terms of accuracy. However, the characterization of the dispersive errors
for wavelet formulations is virtually nonexistent in the literature. Therefore,
attention has been placed on characterizing the phase and group errors and
their source. This is a necessary step in evaluating wavelet formulations in
terms of accuracy, and ultimately assessing their grid resolution requirements.

1.3.2 Computational Performance

One of the goals for this e�ort was to develop the framework for applying
wavelets to the computation of complex, multi-scale, multi-physics problems.
The success of many computational strategies hinges upon the ability to treat
high-resolution and non-uniform meshes, complicated geometry and coupled
nonlinear physical phenomena in a computationally e�cient fashion. Al-
though the intrinsic adaptive nature of wavelet bases promises to relieve the
need for increasingly high-resolution meshes, most of the existing wavelet for-
mulations have not been assessed for their computational performance. Thus,
this e�ort has also attempted to quantify the following: computational e�-
ciency, sequential scaling (complexity), compatibility with FE (unstructured
grid) data structures, and adaptivity. In addition, the methods selected for
this study have been chosen based on the ability to exploit parallelism.

1.4 Overview

The subsequent chapters of this report consider the so-called DGHM multi-
wavelet element and the use of semi-orthogonal wavelets for solving elliptic
partial di�erential equations. In Chapter 2, the development of a residual-
based multi-level solution strategy that directly uses the wavelet basis and a
discrete wavelet transform is presented. Chapter 3 presents the construction
of wavelets that, by design, are semi-orthogonal with respect to the bilinear
form of an elliptic operator. The use of the wavelet transform as a multi-scale
preconditioner is also outlined in this chapter. The ideas of splitting �nite
element spaces are presented with the development of a multi-scale �nite
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element in Chapter 4. Finally, the numerical performance of the reproducing
kernel method for hyperbolic and parabolic problems is addressed in Chapter
5. A summary of the exploratory research e�orts and recommendations for
further work are presented in Chapter 6.



Chapter 2

The DGHM Multi-wavelet

This chapter provides an overview of a �nite element based on the DGHM
(Donovan-Geronimo-Hardin-Massopust) multi-wavelets and the use of both
the DGHM multi-scaling functions and the multi-wavelets in a Galerkin
framework. The DGHM multi-wavelets are not new, and their use in solv-
ing elliptic partial di�erential equations has been investigated by Ko et al.57

where the so-called AFIF element was considered. Here, we choose to refer
to the AFIF element as the DGHM element to acknowledge the researchers
that introduced the DGHMmulti-wavelets. The theoretical development and
background on the DGHM multi-wavelets may be found in the series of pa-
pers by Donovan et al.,37 Geronimo et al.,40 and Massopust.76 The piecewise
quadratic form of the multi-scaling functions with approximation order p = 3
was constructed by Roach87 in the context of pre-�lters for signal process-
ing. Additional information on multi-wavelets may be found in the work by
Strela,90 Strela and Strang92 and Plonka and Strela.83

In the work presented here, the choice to use the DGHM multi-wavelet
was driven by the desire to have a basis with compact support while focusing
on developing algorithms that make use of both the scaling functions and
their associated wavelets. Here, both the linear (DGHM) and quadratic87

forms of the multi-wavelets are considered. Figure 2.1 shows the linear
DGHM multi-scaling and multi-wavelet functions at the element level and in
an assembled form for two elements. In the element form, the multi-scaling
functions exhibit some similarities to the quadratic �nite element. That is
to say, the DGHM multi-scaling functions looks like a fractal version of the
quadratic �nite element.

Before proceeding with a description of the multi-scale Galerkin solution

31
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Figure 2.1: Donovan-Geronimo-Hardin-Massopust (DGHM) multi-wavelet
element showing (a) the DGHM \shape" functions (�), (b) the element view
of the multi-wavelet shape functions ( ), (c) an assembly of two DGHM
multi-wavelet elements, and (d) the corresponding wavelets.

algorithm for elliptic partial di�erential equations, the mathematical frame-
work for the Galerkin procedure is outlined in terms of the multi-scaling func-
tions. A detailed description of the DGHM multi-wavelets is not presented
here. The interested reader may refer to the work by Donovan, Geronimo
and Massopust37,40,76

2.1 A Scaling Function Galerkin Formulation

Let �k be a column vector containing all of the translations of a set of scaling
functions supported in 
 � R at scale k,

�k =

2
66664

�1

�2

...
�M(k)

3
77775 ; (2.1)
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where the length, Ndof , of �k depends on the scale, k. Here, Ndof in-
dicates the number of degrees-of-freedom associated with scale k neglecting
boundary degrees-of-freedom. This form of the scaling functions is somewhat
inconsistent with equation (1.5), since here k is used to designate the \scale"
and the vector of basis elements, �k, corresponds to the collection of all the
integer translates of the scaling functions at scale k. An assembly of two
DGHM elements is shown in Figure 2.1c corresponding to Ndof = 3 and
k = 0.

Given a di�erential operator L consider the boundary value problem

Lu = f on 
 (2.2)

u = g on �:

Let the trial solution be in Vk, i.e.

uk = c0
k

T
�k: (2.3)

In a Bubnov-Galerkin formulation with Vk being the test space, after
integration by parts, the problem becomes

K��
k
c0
k
= F�

k
; (2.4)

where c0
k
are the unknown coe�cients at scale k.

For the model elliptic problem considered here, Lu = �u00

, the condition
number associated with the sti�ness matrix, K��

k
, grows as O(h�2) for the

�nite elements as well as the multi-scaling function elements as shown in
Table 2.1. Here, h is the node spacing, and the superscript \��" on the
operator K has been used to indicate that the scaling functions, �, have
been used as both test and trial functions.

The condition numbers presented in Table 2.1 show that the initial con-
dition number is approximately 2 � 6 times worse for the multi-wavelet el-
ements than the corresponding quadratic �nite element. A precise reason
for the degraded condition number relative to the �nite elements at a given
mesh resolution is not clearly understood, but it is thought to be related to
the underlying fractal nature of these scaling functions.

It was shown by Donovan et al.38 that the DGHM element based on
multi-scaling functions has the same approximation order as the linear �-
nite element, i.e., the approximation order is two. Massopust76 showed that
the rate of convergence of the DGHM scaling function element for a simple
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Element Linear Quadratic DGHM Quadratic
FEM FEM Multi-Wavelet Multi-Wavelet

Scale k cond(K��
k

) cond(K��
k

) cond(K��
k

) cond(K��
k

)
0 5.8 7.2 14.4 43.2
1 25.3 33.1 79.8 198.8
2 103.1 136.8 346.1 824.6
3 414.3 551.8 1413.2 3328.7
4 1659.4 2211.8 5681.9 13345.2

Table 2.1: Condition numbers of the sti�ness matrix K��
k

at scale k for
the linear and quadratic �nite elements and DGHM multi-scaling function
elements.

elliptic problem is the same as for the linear �nite element. Therefore, ig-
noring the di�culties in performing numerical quadrature due to the fractal
nature of the scaling functions, the DGHM element has a computational cost
that is about the same as a quadratic �nite element but the approximation
properties of a linear �nite element.

Using the wavelets

As suggested in the historical overview of wavelet-based PDE solution meth-
ods, few researchers have made use of the wavelet bases directly in the solu-
tion algorithm. In order to make use of the multi-wavelets, let �k and 	k be
column vectors containing all of the translations of the scaling and wavelet
functions supported in 
 � IR at scale k. Let uk+1 := cT

k
�k + dT

k
	k where

ck and dk are column vectors of the appropriate lengths. Implicit in this
de�nition is the fact that multiple grid levels are being used { a coarse grid
representation associated with scale k, and a �ner grid associated with scale
k+1. Given a di�erential operator, L, consider the boundary value problem
de�ned by equation (2.2). Let < �; � > denote the L2 inner-product between
L2(IR) functions. The Galerkin approximation for uk+1 is determined by*"

�k
	k

#
;L
 h
cT
k
dT
k

i " �k
	k

#!+
=

*"
�k
	k

#
; f

+

*
L
"
�k
	k

#
;

"
�k
	k

#+ "
ck
dk

#
=

"
F�
k

F	
k

#
: (2.5)
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After integration by parts, the matrix form of the two-scale formulation is

"
K��
k

K�	
k

K	�
k

K		
k

# "
ck
dk

#
=

"
F�
k

F	
k

#
; (2.6)

where the operators K��
k

, K		
k

, and K�	
k

are understood to contain weak-
ened derivatives obtained by integration by parts.

In the subsequent algorithm development, the initial coarse-grid so-
lution is chosen to be c0

k
= K��

k

�1
F�
k
with d0

k
= 0 for convenience. With this

convention it can be shown that

uk+1 = (c0
k+1)

T�k+1 = cT
k
�k + dT

k
	k: (2.7)

To see this equivalence, recall that

�k+1 =Wk

"
�k
	k

#
; (2.8)

where the wavelet transform is given by

Wk := [Hk Gk]: (2.9)

For DGHM, the wavelet transform matrices are

H1 =
1

20
p
2

2
666666666664

12 �p2 0

16
p
2 �6 0

12 9
p
2 0

0 20 0

0 9
p
2 12

0 �6 16
p
2

0 �p2 12

3
777777777775
; (2.10)

G1 =
1

20

2
666666666664

�2 �p2 �1 0

�6p2 �6 �3p2 0

18 9
p
2 9 0

0 0 �10p2 0

0 �9p2 9 18

0 6 �3p2 �6p2
0

p
2 �1 �2

3
777777777775
: (2.11)
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The action of the wavelet transform is to act as a �nite-domain convolution
where Hk is essentially an averaging operator, and Gk is a \di�erencing"
operator that accounts for detail in the function.

Proceeding with these de�nitions, the wavelet transform is used to develop
the Galerkin formulation in terms of coarse-scale unknown coe�cients, ck,
and wavelet coe�cients, dk. Beginning with the original problem,

Luk+1 = f

D
�k+1;L(c0k+1)T�k+1

E
= h�k+1; fi

*
[Hk Gk]

"
�k
	k

#
;L
 
(c0
k+1)

T [Hk Gk]

"
�k
	k

#!+
=

*
[Hk Gk]

"
�k
	k

#
; f

+

[Hk Gk]

*
L
"
�k
	k

#
;

"
�k
	k

#+ "
HT

k

GT
k

#
c0
k+1 = [Hk Gk]

"
F�
k

F	
k

#

"
K��
k

K�	
k

K	�
k

K		
k

# "
HT

k

GT
k

#
c0
k+1 =

"
F�
k

F	
k

#
: (2.12)

Therefore using equations (2.6) and (2.12) we have

c0
k+1 =

"
HT

k

GT
k

#
�1 "

ck
dk

#
: (2.13)

Now because � and 	 each form an orthonormal basis, Hk and Gk combine
to form an orthogonal matrix, i.e. (A�1 = AT ). Thus

c0
k+1 = [Hk Gk]

"
ck
dk

#
: (2.14)

2.2 A Multi-Scale Algorithm

As we have seen, the Galerkin formulation just described leads to the follow-
ing linear system,

"
K��
k

K�	
k

K	�
k

K		
k

# "
ck
dk

#
=

"
F�
k

F	
k

#
: (2.15)
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Consider the individual discrete equations for ck and dk

K��
k
ck = F�

k
�K�	

k
dk (2.16)

K		
k
dk = F	

k
�K	�

k
ck: (2.17)

Remark 1 Given any wavelet trial basis for the operator Lu = �u00, the two
sparse block -Toeplitz matrices K��

k
and K�	

k
have the property that

T�	
k

:= K��
k

�1
K�	
k

(2.18)

is also sparse block-Toeplitz. This property is true for the DGHM and the
piecewise quadratic multi-wavelets and may be true for all wavelets.

Using the relation between the sti�ness operators in equations (2.16) and
(2.17),

ck = c0
k
� T�	

k
dk; (2.19)

where c0
k
is the coarse-grid solution at scale k that is associated with the

scaling functions. Thus, ck is determined by reconstruction using c0
k
, dk,

and T�	
k

which can be assembled in the �nite element sense for any scale k.
Substituting equation (2.19) into equation (2.17) yields

(K		
k

�K	�
k
T�	
k

)dk = F	
k
�K	�

k
c0
k
: (2.20)

Table 2.2 shows that, for the elliptic model problem, the matrix, (K		
k

�
K	�
k
T�	
k

), in equation (2.20) is well-conditioned for both the DGHM and
piecewise-quadratic multi-wavelet elements. (The condition number of a ma-
trix is the ratio of the largest to smallest eigenvalues and is used as a measure
of the di�culty associated with solving the linear system involving the oper-
ator K		

k
�K	�

k
T�	
k

.)
At this point the problem is reduced to solving for dk using the well-

conditioned system in (2.20). Numerous methods can be used, but for sim-
plicity we will consider two stationary iterative methods, i.e., Jacobi and
Gauss-Seidel.

The discussion of these methods begins with the following splitting

Ak =Mk �Nk; (2.21)

where Ak = (K		
k

�K	�
k
T�	
k

), andMk is the diagonal (lower triangle) of Ak
for the Jacobi (Gauss-Seidel) method. Applying this splitting to equation
(2.21) yields

dk =M�1
k
(Nkdk + bk); (2.22)
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Element DGHM Quadratic
Multi-Wavelet Multi-Wavelet

Scale k cond(K		
k

�K	�
k
T�	
k

) cond(K		
k

�K	�
k
T�	
k

)
0 2.3533 5.5676
1 2.5497 5.7478
2 2.6057 5.7945
3 2.6201 5.8063
4 2.6238 5.8093

Table 2.2: Condition numbers for the matrix (K		
k

� K	�
k
T�	
k

) for scale 0
through 4.

which will be used in the iteration process in the multi-scale algorithm de-
scribed below.

Multi-Scale Algorithm

The multi-scale solution algorithm proceeds as follows.

1. Solve for the coarse-grid coe�cients, c0
k
= K��

k

�1
F�
k
with d0

k
= 0.

2. Use an iterative method (here, Jacobi or Gauss-Seidel) to �nd the
wavelet coe�cients, dN

k
.

dn+1
k

=M�1
k
(Nkd

n

k
+ bk); n = 1; : : : ; N:

3. Correct the coarse-grid coe�cients using the wavelets.

ck = c0
k
� T�	

k
dN
k
:

4. Reconstruct the coe�cients associated with the next higher-resolution
grid using the wavelet transform, i.e.

c0
k+1 = Wk

"
ck
dk

#
:

5. Repeat 2-4 until the wavelet coe�cients, dk, are su�ciently small.
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Although this example algorithm only explicitly refers to two scales, it
is understood that multiple levels of grid resolution may be nested in the
computation of the wavelet coe�cients. That is to say, the computation of
dk implies that as many levels of grid resolution as are required are included
in steps 2-4 in the multi-scale algorithm. It is also important to note that
the matricesM�1

k
; T�	

k
; Nk; and Wk are all assembled matrices, reducing the

algorithm to matrix-vector multiplications.

Example 3 As an example application of the multi-scale algorithm, consider
the di�erential equation

�u00(x) = x(x� 5=4)(x� 2) on [0; 2]; (2.23)

with essential boundary conditions

u(0) = u(2) = 0: (2.24)

The solution to this problem is shown in Figure 2.2 at four scales (levels of
grid resolution) with the exact solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

X

U

3−unknowns 
7−unknowns 
15−unknowns
31−unknowns
Exact      

Figure 2.2: DGHM multi-wavelet multi-scale solution.

Table 2.3 shows the spectral radii for the Jacobi and Gauss-Seidel iteration
matrices associated with the multi-wavelet elements for the model problem.
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The spectral radii quickly asymptote, are bounded away from unity and remain
constant with respect to increasing mesh resolution, i.e., increasing from scale
0 to scale 8 corresponds to increasing the mesh resolution by a factor of
256. This result reinforces the idea that application of an iterative method to
(K		

k
� K	�

k
T�	
k

) is an appropriate choice for the development of e�cient
solution methods.

DGHM Quadratic DGHM Quadratic
Multi-Wavelet Multi-Wavelet Multi-Wavelet Multi-Wavelet

Jacobi Jacobi Gauss-Seidel Gauss-Seidel

Scale k �(M�1
k
Nk) �(M�1

k
Nk) �(M�1

k
Nk) �(M�1

k
Nk)

0 0.135 0.575 0.018 0.306
1 0.135 0.581 0.018 0.329
2 0.135 0.582 0.018 0.340
3 0.135 0.582 0.018 0.343
4 0.135 0.582 0.018 0.344
5 0.135 0.582 0.018 0.344
6 0.135 0.582 0.018 0.344
7 0.135 0.582 0.018 0.344
8 0.135 0.582 0.018 0.344

Table 2.3: Spectral radii for for Jacobi and Gauss-Seidel iteration matrices as-
sociated with Ak = (K		

k
�K	�

k
T�	
k

) for the DGHM and piecewise-quadratic
elements.

In order to further evaluate the DGHM multi-wavelet element and the
multi-scale algorithm the condition number associated with the general-
ized sti�ness matrix was computed for both the multi-scaling functions and
the multi-wavelets. The model problem considered is ��u00 + u = f with
� � 0, and u(0) = u(L) = 0. In the weak form, this problem becomes
M��U +K��U = F which introduces the mass matrix, M�� in addition to
the sti�ness.

Table 2.4 shows the condition numbers for both K̂�� = [M��+K��] and
K̂		 = [M		+K		] after diagonal scaling for 0 � � � 1. Here, k indicates
the scale with increasing k corresponding to increasing mesh resolution, i.e.,
�x = 2�(k+1). As shown by the results, increasing the mesh resolution by a
factor of 256 results in condition numbers that grow by 5 orders of magnitude
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� 0 1 10 10000 1

k K̂�� K̂		 K̂�� K̂		 K̂�� K̂		 K̂�� K̂		 K̂�� K̂		

0 1 1 15 4 19 4 20 4 20 4
1 1 1 78 12 104 13 109 13 109 13
2 1 1 334 17 453 19 471 19 471 19
3 1 1 1355 24 1846 26 1922 26 1923 26
4 1 1 5441 29 7418 31 7727 31 7727 31
5 1 1 21785 33 29708 36 30945 36 30947 36
6 1 1 87160 40 118866 40 123819 40 123824 40
7 1 1 348662 44 475500 43 495311 43 495332 43
8 1 1 1394668 47 1902035 46 1981282 46 1981365 46

Table 2.4: Condition numbers for the diagonally scaled K̂�� and K̂		 oper-
ators for multiple mesh scales, 0 � k � 8, and 0 � � � 1.

for K̂��, while the condition numbers for K̂		 increase by only a factor of
10 and appear to be approaching asymptotic values. Note that for small
values of the parameter, �, the eigenvalues associated with the mass matrix
dominate in K̂�� yielding condition numbers that are O(1). In contrast, for
�nite values of �, the eigenvalues of the sti�ness matrix, K�� dominate and
yield condition numbers for K̂�� that grow as h�2. In contrast, the condition
numbers for K̂		 are relatively well behaved independent of �.

2.3 Numerical Performance

In this section, a brief digression is made in order to present a �nite di�erence
interpretation of the DGHM element. In addition, the dispersive behavior of
the DGHM element is presented relative to the quadratic �nite element.

2.3.1 A Finite Di�erence Interpretation

In order to gain a sense of what the DGHM element yields in terms of a
�nite di�erence discretization, the equivalent di�erence stencils for a cen-
tered approximation to u00 is presented here. In order to undo the Galerkin
weighting introduced by the multiplication of the test functions, the proce-
dure outlined by Gresho46 (see pp. 52-53) is used for the linear, quadratic
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and DGHM elements.
A cautionary warning is needed here because the use of a Taylor series,

i.e., a �nite di�erence, interpretation of the Galerkin discretizations can be
misleading. As pointed out by Gresho46 (and many others), the global �nite
element theory prevails over local Taylor series analyses. This point will be
emphasized below with the quadratic element. The �nite di�erence sten-
cils presented below are simply intended to aid in the understanding and
interpretation of the DGHM wavelet element.

In a Galerkin �nite element setting, the element level mass, M e, and
sti�ness, Ke, operators associated with the second order wave equation for
the one-dimensional DGHM element are

M e =
d

6

2
64
1

4
1

3
75 ; (2.25)

and

Ke =
1

21d

2
64

85 �128 43
256 �128

sym: 85

3
75 : (2.26)

Here, d = 2�x is the element diameter in the grid, and �x is the node
spacing. A partition of unity scaling has been applied to the multi-scaling
functions to obtain the \unit" mass and sti�ness. Surprisingly, the element
level mass matrix is identical to the row-sum lumped mass matrix for the
quadratic �nite element and is diagonal because the DGHM multi-wavelet
scaling functions are orthogonal in L2(IR). In contrast, the sti�ness in equa-
tion (2.26) di�ers somewhat from the sti�ness for the quadratic element
shown in Eq. (2.27) (see Belytschko and Mullen4).

Ke =
1

3d

2
64

7 �8 1
16 �8

sym: 7

3
75 : (2.27)

Remark 2 Despite the fractal nature of the DGHM multi-wavelet, the mass

and sti�ness entries can be calculated exactly for the one-dimensional DGHM

element. This is accomplished by using the re�nement equations associated

with each scaling function. The recursion relation associated with the re�ne-

ment equation provides a convenient way to solve for the moments, polyno-

mial inner products, and in particular the mass and sti�ness entries. For
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inner products with general functions, there is no exact calculation, but by

conveniently representing the function of interest with a polynomial spline

function a very good approximation to the inner product is obtained by using

the exact polynomial inner product.

The local �nite di�erence stencils are shown in Table 2.5 with the corre-
sponding order of the local truncation error for each discretization scheme.
In a �nite di�erence sense, the second-order central di�erence scheme and the
linear �nite element yield identical di�erence stencils. Similarly, the center
node for the quadratic �nite element yields a di�erence stencil identical to
the linear element and 3-point �nite di�erence stencil. Interestingly, the edge
node of the quadratic does not appear to yield the fourth-order 5-point �nite
di�erence stencil. However, Gresho46 has demonstrated that this apparent
result is in error and misleading since the global �nite element theory leads
to O(�x3) estimates rather than the local estimates of O(�x2) based on a
Taylor series expansion.

The DGHM element yields center and edge node stencils that are simi-
lar in some respects to the quadratic element stencils. However, the leading
fractional multiplier for each stencil is a result of the fractal nature of the ba-
sis functions. Although it would be natural to suspect that the global �nite
element theory would show that the DGHM element, like the quadratic ele-
ment, yields an O(�x3) approximation, Massopust76 has demonstrated that
the DGHM element delivers accuracy no better than the linear �nite element,
i.e., O(�x2). This is due to the fact that the DGHM multi-scaling functions
can only represent functions comprised of f1; xg, unlike the quadratic element
that can represent f1; x; x2g. Thus, the DGHM element is a quadratic-like
element, with the concomitant computational cost of a quadratic element,
that performs like a linear element!

2.3.2 Dispersive Behavior

Attention is now turned to the question of numerical dispersion. For this
discussion, the model problem under consideration is the second-order wave
equation in Cartesian coordinates,

@2u

@t2
� c2

@2u

@x2
= 0: (2.28)

Because of the similarities to the quadratic element, the dispersion results
for the DGHM element are compared to those for the quadratic element.
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Remark 3 The hierarchical nature of the DGHM wavelet-Galerkin formu-

lation permits multi-scale solution strategies to be formulated. However, for

the purposes of numerical analysis, only the scaling functions need to be con-

sidered because the total, solution is considered to be represented in terms of

the scaling functions at the �nest scale, i.e., at the highest mesh resolution.

Thus, the operators based only on the scaling functions are su�cient for a

von Neumann analysis.

The details of the von Neumann analysis are omitted here, but follow the
analysis performed by Belytschko and Mullen4 for the quadratic element. A
detailed introduction to dispersion analysis is also presented in Chapter 5.
The semi-discrete Galerkin form of the second-order wave equations is

M�U +KU = 0; (2.29)

whereM is the mass matrix,K is the sti�ness matrix, andU are the unknown
coe�cients.

The non-dimensional frequency, !�x=c, for the DGHM wavelet element
is shown in Figure 2.3 with the frequency spectra for the quadratic �nite
element. Here, c is the sonic velocity, �x the grid spacing, and � the wave-
length. The frequency response for each element admits two solutions, the
so-called optical and acoustical branches. The gap between the branches of
the frequency response is often referred to as a \stopping" band. The simi-
larities between the spectra for the DGHM and quadratic elements suggests
that the dispersive nature of the DGHM element will be somewhat worse
than the quadratic element, due in part to the lack of spatial coupling of
time-derivatives associated with the diagonal mass matrix.

An alternative view of the dispersion error may be seen in Figure 2.4
which shows the non-dimensional phase speed, i.e., the discrete or apparent
sound speed normalized by the true sound speed. Here, only the \acoustic"
branch from the dispersion relations is shown, and there is clearly signi�cant
leading phase error in the mid-range of the spectrum relative to the acoustic
branch for the quadratic element.

2.4 Summary

In this chapter, the Donovan-Geronimo-Hardin-Massopust (DGHM) multi-
wavelets were used to develop a multi-level solution algorithm in which both
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Figure 2.3: Non-dimensional circular frequency for the quadratic �nite ele-
ment and the DGHM multi-wavelet element.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

ψ

2∆x/λ

Quadratic FEM
DGHM Element

Figure 2.4: Non-dimensional phase speed for the quadratic �nite element and
the DGHM multi-wavelet element.
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the multi-scaling functions and the multi-wavelets are used directly in the
solution procedure. However, the DGHM wavelet element is inferior to the
quadratic �nite element in terms of its numerical performance because the
element has the computational cost of a quadratic element, the convergence
properties of a linear element, and inferior dispersive characteristics. Al-
though the DGHM element is not appropriate for use in applications, it has
been useful in developing the concepts for multi-level solution algorithms in
terms of a true wavelet basis. These concepts are expanded in the subsequent
chapters.
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Stencil Truncation Error

FDM { Centered 3 Point
1

�x2
(ui�1 � 2ui + ui+1) O(�x2)

FDM { Centered 5 Point
1

12�x2
(ui�2 � 16ui�1 + 30ui � 16ui+1 + ui+2) O(�x4)

FEM { Linear
1

�x2
(ui�1 � 2ui + ui+1) O(�x2)

FEM { Quadratic (center node)
1

�x2
(ui�1 � 2ui + ui+1) O(�x2)

FEM { Quadratic (edge node)
1

4�x2
(�ui�2 + 8ui�1 � 14ui + 8ui+1 � ui+2) O(�x2)

DGHM { Center Node
10

7�x2
(ui�1 � 2ui + ui+1) O(�x2)

DGHM { Edge Node
2

49�x2
(�2ui�2 + 25ui�1 � 46ui + 25ui+1 � 2ui+2) O(�x2)

Table 2.5: Finite di�erence stencils and leading order of truncation error for
u00.
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Chapter 3

The \Semi-hat" Basis

In this chapter, we present a construction of wavelets that are (a) semi-
orthogonal with respect to an arbitrary elliptic bilinear form a(�; �) on the
Sobolev space H1

0 (0; L) and (b) continuous and piecewise linear on an arbi-
trary discretization of [0; L]. Here, semi-orthogonal is understood to indicate
orthogonality of the wavelets between multiple scales with respect to the
bilinear form, i.e., a( (2k�);  (2j�)) = 0 for k 6= j. We illustrate this con-
struction using the model problem

��2u00 + u = f

u(0) = u(L) = 0:

We also construct a-orthogonal Battle-Lemari�e type wavelets that fully
diagonalize the Galerkin discretized matrix for the model problem with do-
main IR.

Finally, we describe a hybrid basis consisting of a combination of el-
ements from the semi-orthogonal wavelet basis and a hierarchical Schauder
basis. Numerical experiments indicate that this basis leads to robust, scalable
Galerkin discretizations of the model problem that remain well-conditioned
independent of �, L, and the re�nement level K.

3.1 Introduction

In this section, we review some basic theory about Galerkin discretizations
of elliptic variational problems and their relationship to the Riesz bounds of
the underlying basis (cf. Cohmas and Masson,21 Dahmen26).

49
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Let H be a Hilbert space with inner product h�; �iH. Let a(�; �) be a
symmetric coercive continuous bilinear form on H, that is, a is a symmetric
bilinear form such that

Ckvk2H � a(v; v) � Dkvk2H

for some positive constants C and D. Let k�kE :=
q
a(�; �) is the energy norm

generated by a. The coercivity and continuity of a imply that the energy
norm is equivalent to the norm associated with H.

Let H0 (�= H) denote the dual of H. Consider the elliptic variational
problem:

Given F 2 H0, �nd u 2 H such that
a(u; v) = F (v); 8v 2 H:

(3.1)

Let V be a �nite dimensional subspace of H. Then the Galerkin approximate
solution uV is the unique solution of (3.1) with H replaced by V. Let � =
(�1; : : : ; �N)T be a basis for V. (Throughout this paper, a basis will be
arranged as a column vector.) Then uV = cT� can be found by solving the
linear system

a(�;�)c = F (�); (3.2)

where a(�;�) is the N �N matrix (a(�i; �j)) and F (�) is the column vector
(F (�1); : : : ; F (�N))T .

For large N , it is usually impractical to solve the linear system (3.2) using
direct solution methods. When the matrix A� := a(�;�) is well-conditioned,
the system can be e�ciently solved using iterative methods. We say that �
(respectively �) is a lower (upper) Riesz bound for the basis � with respect
to k � kE if

� cTc � kcT�k2E � � cTc: (3.3)

De�ne �� (��) to be the largest (smallest) lower (upper) Riesz bound for �
with respect to k � kE. Observe that

kcT�k2E = cTA�c:

Since A� is symmetric and positive de�nite we have

kA�k2 = max
c

cTA�c

cT c
= ��

k(A�)�1k�12 = min
c

cTA�c

cT c
= ��:
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Therefore, the condition number of A�, cond(A�), is related to the Riesz
bounds for � in the following way:

cond(A�) = ��=��: (3.4)

Suppose 	 is another basis for V and supposeW is the nonsingularN�N
matrix such that

	 =W T�:

Then de�ning uV = dT	, d may be found by solving

a(	;	)d = F (	): (3.5)

Note that
A	 = a(	;	) =W Ta(�;�)W: (3.6)

Thus the linear system (3.5) resulting from (3.2) by a change of basis can
also be considered to arise from (3.2) by preconditioning with W .

3.2 Multi-Scale Transformations

As demonstrated in Chapter 2, the wavelet transform plays a key role in
multi-scale solution algorithms. Given that

V0 � V1 � � � � � Vk � � � �

is a one-sided sequence of nested �nite-dimensional subspaces of H such thatS
Vk = H. De�ne W0 := V0 and, for k � 1, choose Wk in Vk so that

Vk = Vk�1 �Wk (3.7)

where � denotes the direct sum. (Note that here, the direct sum is not an
orthogonal direct sum). Let �k be a basis for Vk and let  k be a basis for
Wk (we choose  0 = �0). Then

	k :=

0
BB@
 0
...
 k

1
CCA
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is also a basis for Vk. Let Wk be the multi-scale transformation such that

	k =W T
k �k;

and let Tk be the two-scale transformation such that
 
�k�1

 k

!
= T T

k �k:

Observe that

Wk = Tk

 
Tk�1 0
0 Ik�1

!
� � �

 
T1 0
0 I1

!

where Ik is the n� n identity matrix with n = dim(Vk).
Fix K and let 	 = 	K ; � = �K ; and W = WK . We assume that (a)

multiplication by W can be implemented with a fast algorithm (this is the
case for compactly supported wavelet bases), (b) A	 is well-conditioned, and
(c) F (�) can be easily approximated. Algorithm A summarizes the solution
of the discretized problem given in (3.2) using the multi-scale transform W .
Algorithm A:

� Approximate F�.

� Calculate F	 =W TF�.

� Solve A	d = F	.

� c =Wd:

One very important aspect of this algorithm is that it does not use the
decomposition matrix W�1. This is signi�cant because it permits the relax-
ation of strict orthogonality in the construction of the wavelet basis.

3.3 Wavelet Construction

Let (Xk)k�0 be a given sequence of nested knot sequences on [0; 1] (i.e., a
series of logically ordered and nested grids) satisfying

� Xk = (xjk)0�j�Nk

� 0 = x0k < � � � < xjk < � � � < xNk

k = L
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Figure 3.1: Schauder basis 	2 = ( T
0  T

1  T
2 )

T with dimension 7 on a
uniform discretization.

� x2jk+1 = xjk

Let �jk be the piecewise linear continuous function associated with knot

sequence Xk such that �jk(x
j0

k ) = �j;j0. If �k = (�1k; : : : ; �
Nk�1
k )T , then �k is

a nodal basis for Vk that is the usual �nite element space of piecewise linear
continuous functions on [0; L] with knot sequence Xk.

We next describe two choices for Wk.

3.3.1 Hierarchical Schauder Basis

One simple choice for Wk satisfying (3.7) is the well known Schauder ba-
sis27,110,112

 j
k := �2j�1k ; j = 1; : : : ; Nk

illustrated in Figure 3.1.
Next we construct the two-scale transformation for the Schauder basis.

Denote the length of the subinterval [xj�1k ; xjk] by

�j
k := xjk � xj�1k :

The function values hj;j
0

k and gj;j
0

k for �jk�1 and  j
k respectively at the knot
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(grid point) xj
0

k are given by

hj;j
0

k =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�j0

k

�j

k�1

; j 0 = 2j � 1

1; j 0 = 2j

�j0+1

k

�j
k�1

; j 0 = 2j + 1

0; otherwise

gj;j
0

k = �j0;2j�1:

Then

�jk�1 =
X
j0
hj;j

0

k �j
0

k

 jk =
X
j0
gj;j

0

k �j
0

k :

Now let Hk be the (Nk � 1) � (Nk�1 � 1) matrix Hk = (hj;j
0

k )j0;j and let

Gk be the (Nk � 1) � (Nk�1) matrix Gk = (gj;j
0

k )j0;j. Thus, the two-scale
transformation for the Schauder basis is given by

Tk = (Hk Gk) :

3.3.2 Semi-Orthogonal Sombrero Wavelets

Here we choose Wk to be the orthogonal complement of Vk�1 in Vk with
respect to the scalar product a(�; �), that is

Wk := Vk \ V
?a

k�1:

Regardless of the choice of basis  k forWk, the matrix A	k is then decoupled
between grid levels so that it is a block diagonal matrix:

A	k = diag(A 0 ; A 1 ; : : : ; A k):

We next give a procedure for constructing a local basis of wavelets for
Wk. Let

B := B(k) = a(�k�1;�k)
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where we suppress the k dependence when the choice for k is unambiguous.
Note that

Wk = fgT�k j g 2 kerBg:

We will use certain sub-blocks of B in our construction. To this end we
de�ne Ri1;i2 to be the (i2 � i1 + 1) � (Nk � 1) matrix whose i-th row is the
(i � i1 + 1)-th row of the (Nk � 1) � (Nk � 1) identity matrix. Then the
[i1; i2]� [j1; j2] block of B is given by

Bi1;i2
j1;j2 := Ri1;i2BR

T
j1;j2:

Let

Cn :=

8>>>>>><
>>>>>>:

B1;n
1;2n�1 for n = 2; 3

Bn�3;n
2n�5;2n�1 for 3 � n � Nk�1 � 1

Bn�3;n�1
2n�5;2n�1 for n = Nk�1

For 4 � n < Nk�1, the matrix Cn is a 4 � 5 matrix that generically has
a kernel of dimension one. This kernel then corresponds to a wavelet with
support contained in [x2n�6k ; x2nk ] = [xn�3k�1 ; x

n
k�1]. More generally, we de�ne

the following procedure for constructing a local basis for Wk.
Let Kn := ker(Cn) and, for n � 3, let K0

n denote the subspace of Kn

consisting of the elements in w 2 Kn whose last two components are both
zero. In the generic case, K0

n is the trivial subspace. Let

�nk :=

8><
>:

(�1k; �
2
k; �

3
k)
T ; n = 2

(�2n�5k ; : : : ; �2n�1k )T ; 3 � n � Nk�1:
(3.8)

Algorithm B:

� Let w3 denote a basis for C3 and set  3
k = fwT�3

k j w 2 w3g.

� For n = 3; : : : ; Nk�1, do

{ Choose K1
n so that Kn = K0

n �K1
n and choose a basis wn for K1

n.

{ Set  nk = fwT�nk j w 2 wng.



56 CHAPTER 3. THE \SEMI-HAT" BASIS

�  k =
SNk�1

n=3  nk :

We next give a su�cient condition that the above procedure produces a
basis for Wk. For 4 � n < Nk�1, we note that Cn has the following block
form

Cn =

 
Dn En
0 Fn

!
(3.9)

where Dn is 3� 3, En is 3� 2, and Fn is 1� 2.

Lemma 3.3.1 Let  k be the set produced by Algorithm B. Suppose

range Dn � En(kerFn) (4 � n � Nk�1): (3.10)

Then  k is a basis for Wk := Vk \ V
?a

k�1:

Proof:

Let Sn1;n2 := ff 2 Wk j supp(f) � [x2n1k ; x2n2k ]g. Let Bn := B1;n
1;2n�1. Note

that f 2 S0;n if and only if f = yT (�1k; : : : ; �
2n�1
k )T for some y 2 kerBn and

that f 2 Sn�3;n if and only if f = yT�nk for some y 2 kerCn. Hence, the
proof will be complete if we can show that

S0;n = S0;n�1 + Sn�3;n; (4 � n � Nk�1): (3.11)

Observe that

Bn =

 
Bn�1 En
0 Fn

!
(3.12)

for n � 4.
Suppose v 2 kerFn, then by (3.10) there is some u 2 kerCn such that

(u4; u5)T = v. Suppose y 2 kerBn. From (3.12) it is clear that w :=
(y2n�2; y2n�1)T 2 kerFn and hence there is some u 2 kerCn such that the
last two components of y agree with the last two components of u. We then
obtain

kerBn = P1(kerBn�1) + P2(kerCn) (3.13)

where P1 is the padding operator that takes a vector v of length 2n�3 to one
of length 2n� 1 by appending two zeros to v and P2 is the padding operator
that takes a vector v of length 5 to one of length 2n�1 by prepending 2n�6
zeros to v.

Then (3.11) follows from (3.13) and the proof is complete.

An example is shown in Figure 3.2 for a non-uniform discretization with an
arbitrary re�nement.
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3.4 Uniform Discretization

In this section we give the construction of piecewise-linear wavelets on a
uniform discretization that are semi-orthogonal with respect to the bilinear
form associated with the following model problem:

��2u00 + u = f
u(0) = u(L) = 0:

(3.14)

Let h�; �i be the usual inner product on L2([0; L]) and let H be the Sobolev
space H1

0((0; L)) for some L 2 IR+. We assume f is such that F := hf; �i is
in H0. Then the weak formulation becomes: Find u 2 H so that

a(u; v) := �2hu0; v0i+ hu; vi = hf; vi 8v 2 H: (3.15)

Moreover, suppose (Xk) is a uniform discretization of [0; L]. In order to avoid
special cases associated with boundary wavelets, we let L = 4 and N0 = 4:

xjk =
j

2k
; j = 0; : : : ; Nk = 2kL:

Let �(x) = (1� jx� 1j) and de�ne

�jk := 2k=2�(2k � �j):

(Here we have chosen a di�erent normalization of �jk than the normalization
used in the non-uniform case.) Then

�jk =
1X

l=�1
hl�

j�l
k+1

where h�1 = h1 =
1

2
p
2
, and h0 =

1p
2
.

As in the previous section, let �nk be de�ned by (3.8). Because of the
di�erentiation in the scalar product a, the � in the model problem is scaled
di�erently at each level resulting in a level dependent parameter �k given by

�k := 2k�:

In this case, Cn is independent of 4 � n � Nk�1 � 1 and its kernel is the
space spanned by the vector

w = (24�2k � 1; 6; 48�2k � 10; 6; 24�2k � 1)T (3.16)
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Figure 3.2: V0, V1 � W1, and V2 � W2 bases respectively for the semi-
orthogonal wavelets with a non-uniform discretization and arbitrary re�ne-
ment.
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The kernel of C3 (respectively, CNk�1
) contains w plus an additional vector

wL (respectively, wR) given below:

wL = (9 + 72�2k;�6; 1� 24�2k; 0; 0)
T

and
wR = (0; 0; 1� 24�2k;�6; 9 + 72�2k)

T :

Then we let  1
k = wTL�

3
k,  

j
k = wT�j+1k for 2 � j � Nk�1 � 1 and  

Nk�1

k =

wTR�
Nk�1

k .
The wavelet  is shown in Figure 3.3 for 0 � � � 3. Another more

general construction of semi-orthogonal wavelets on a uniform grid using
Fourier techniques was given in24,25 that includes these wavelets.

3.4.1 Unbounded Domain: Riesz bounds and Battle-

Lemari�e Type Wavelets

We next consider the simpler choice of domain IR. In this case we can
calculate the Riesz bounds for the wavelet bases  k for Wk using Fourier
transform techniques. For � 2 L2(IR) we de�ne the Grammian symbol E�
(with respect to the scalar product a(�; �)) by

E�(!) =
1

2�

X
n2ZZ

a(�; �(� � n))ein! (3.17)

It is a standard result (see,36 for example) that the Riesz bounds �� and
�� for the in�nite basis � = (�(� � n))n2ZZ with respect to a(�; �) are equal
to the essential in�mum and essential supremum of E�, respectively. The
L2-condition number of the in�nite matrix (A�) is then the ratio ��=��.

In the case of our model problem with the sombrero wavelets  k we get

E k(!) = �0 + 2�1 cos(w) + 2�2 cos(2w)

where
�0 = 12(3 + 122�2k + 480�4k + 1152�6k)
�1 = 20=3 + 384�2k � 2304�4k � 9216�6k
�2 = (2=3)(1� 24�2k)

2(�1 + 6�2k):

It is an elementary, but tedious, exercise to verify that

max! E k(!)

min! E k(!)
=

8>>><
>>>:

4
(1+12�2

k
)3

9+432�2
k

for 0 � �k � 0:33

4
9+432�2

k

(1+12�2
k
)3

for 0:36 � �k <1
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Figure 3.3: Semi-orthogonal Sombrero for a) � = 0, b) � = 0:3, c) � = 0:5, d)
� = 3, and e) 0 � � � 3 on a uniform grid with 0 � x � 3.
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and that
max! E k(!)

min! E k(!)
� 1:2 for 0:33 � �k � 0:36: (3.18)

Since A	k is block diagonal, A	k can be preconditioned with a simple diag-
onal preconditioner so that the resulting A	k satis�es

cond(A	k) = max
j�k

cond(A j ):

Then (3.18) shows that cond(A	k) is uniformly bounded for 0 � �k � �� for
any �xed ��. For instance, we get the following:

cond(A	k) <

8><
>:

2:4 for �k < :5
271 for �k < 2
1330 for �k < 3

For the unbounded domain case we use the following well known Fourier
trick (cf.36) to construct an a-orthogonal basis for Wk. Let (�`)`2ZZ denote

the Fourier coe�cients of
q
1=E k and de�ne

BL jk :=
X
`

�` 
j+`
k :

In the case � = 0, we get the usual Battle-Lemari�e wavelets. In this case,
A	k is the identity matrix. It is interesting to observe that BL 0

0 appears to
converge point-wise to the Schauder wavelet h 0

0 = �11 as � goes to in�nity.
The wavelet BL is shown in Figure 3.4 for selected �.

3.4.2 Hybrid Basis

Our goal is to achieve a robust, fully scalable algorithm that is uniformly
O(NK) independent of the size of the problem L, the maximum re�nement
level K, and the parameter �. In this section we assume that our bases
are normalized in the a-norm. This corresponds to a preconditioning of the
form D�1=2AD�1=2 where D is the diagonal of A. We let h	k denote the
normalized Schauder basis described in Section 3.3.1 and s	k the normalized
Sombrero basis described in Section 3.4.

For the model problem, the semi-orthogonal basis is ill-conditioned for
large � and well-conditioned for small �. One approach we have explored
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Figure 3.4: Battle-Lemari�e type wavelets for a) � = 0, b) � = 1, c) � =
p
5,

and d) � = 10.
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Figure 3.5: Non-zero entries in A
sh	K with 4 levels and the semi-orthogonal

basis combined with 2 additional levels with the Schauder basis.

numerically is to use the hybrid basis

sh	K :=

0
BBBB@

s	~k
h ~k+1

...
h K

1
CCCCA

where ~k is chosen so that �~k = O(1). The resulting discretized matrix A
sh	K

is illustrated in Figure 3.5. Our numerical experiments indicate that the
hybrid basis achieves the above mentioned goals for the model problem.
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3.5 Summary

The approach taken for the semi-hat bases has relied on relaxing the orthog-
onality constraints and relying on an algorithmic approach that does not
require the inverse wavelet transform, W�1. The goal for these bases was to
demonstrate the use of semi-orthogonal wavelets that are constructed to have
certain algorithmic properties, i.e., semi-orthogonal with respect to an elliptic
bilinear form, a(�; �). The construction of a hybrid basis was demonstrated to
provide well-conditioned Galerkin discretizations of an elliptic model prob-
lem independent of the model parameters, �; L, and the re�nement level or
grid resolution. This approach follows the lines of the most recent research
(see for example Dahmen and Stevenson34 and Fr�ohlich and Schneider39)
where wavelet bases are being designed speci�cally to yield stable discretiza-
tions with the condition number uniformly bounded independent of the grid
resolution. The concepts put forward here are extended in the subsequent
chapter where the theoretical issues and computational performance of the
hierarchical Schauder basis are addressed.



Chapter 4

The Schauder Basis

In this chapter, the theoretical issues surrounding the well known Schauder
basis109,111 are presented. In one-spatial dimension, the \hierarchical" Schauder
basis is the simplest uniformly stable H1 basis that is available today. The
uniform stability in H1 yields uniformly bounded condition numbers, i.e.,
independent of re�nement level (grid resolution), for elliptic operators in a
Galerkin form. In the ensuing discussion, the details of a uniformly stable
basis will be made concrete. In addition, a comparison between a hierarchi-
cal Schauder basis and the linear �nite element basis is presented. The use
of the wavelet transform in conjunction with the assembly of the mass and
sti�ness operators for a hierarchical basis is also presented. The application
of an ad-hoc row-column lumping procedure for the hierarchical basis is out-
lined, and its e�ectiveness for solving elliptic boundary value problems in one
and two-dimensions is demonstrated. Finally, 1-D and 2-D multi-scale �nite
elements based on the Schauder basis are outlined.

4.1 Stability

To begin the discussion on stability, several de�nitions are required.

De�nition 1 Given a basis � = (�0; �1; �2; : : :)
T for a subspace of a Hilbert

Space, H, with norm k � kH :=
q
h�; �iH . De�ne the associated discretized

matrix as

A� := h�;�iH :=
�
h�i; �jiH

�
i;j2ZZ

:

65



66 CHAPTER 4. THE SCHAUDER BASIS

De�nition 2 Suppose the vector � is a normalized basis for a Hilbert space,
H. Then � is said to be stable in H if there exists constants �; � > 0 such
that

�kck2`2 � kcT�k2H � �kck2`2:
This de�nition of stability is equivalent to the de�nition of a Riesz basis with
respect to the k � kH norm.

Now consider the following set of nested subspaces of H,

V0 � V1 � � � � � Vj � � � � H;

such that �j is a basis for Vj.

De�nition 3 Given a nested sequence fVjgj2ZZ+ of subspaces of a Hilbert
spaceH and their respective bases f�jgj2ZZ+ (normalized inH), then f�jgj2ZZ+
is uniformly stable in H if there exists constants �; � > 0 independent of j
such that

�kcjk2`2 � kcTj �jk2H � �kcjk2`2 j = 0; 1; : : : :

Next, the relationship between stability of a basis and the condition num-
ber of its associated discretized matrix is outlined. In particular, it will be
demonstrated that a uniformly stable set of bases yields uniformly bounded
condition numbers for the discretized matrices independent of the re�nement
level.

Lemma 1 Let � be a basis for a subspace of a Hilbert space H such that A�

is positive de�nite. Let � = kA��1k�12 and � = kA�k2. Then

�kck2`2 � kcT�k2H � �kck2`2;

and

cond(A�) =
�

�
:

Proof:

For the second part, by de�nition the condition number of a symmetric ma-
trix is given by cond(A�) = kA�k2kA��1k2.

For the stability condition, note that

kcT�k2H
kck2`2

=

D
cT�; cT�

E
H

cT c
=
cTA�c

cT c
:
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Moreover, for symmetric matrices

� = kA�k2 = �(A�) = max
c

cTA�c

cT c

which gives us the upper bound. For the lower bound, observe that for
symmetric positive de�nite matrices

� = kA��1k�12 =

0
@max

c

cTA��1c

cT c

1
A
�1

= min
c

cTA�c

cT c
:

Remark 4 The proof of Lemma 1 states that the best stability bounds are
provided by the smallest and largest eigenvalues of the discretized matrix { a
well known fact.

Example 4 Linear �nite element basis:

Let H = L2(0; 2), h(x) = (1� jx � 1j), and �j;k = 2j=2
q

3

2
h(2j � �k)+ where

(�)+ is the usual ramp function. (Here, the subscript + indicates that only
the positive contributions to h(x) are retained and all other function values
are set to zero.) De�ne

Vj = spanf�j;k; k = 0; : : : ; 2j+1 � 2g; j = 0; 1; : : : ;

�j =
�
�j;0; �j;1; : : : ; �j;2j+1�2

�T
:

This basis for j = 3 is shown in Figure 4.1.
Note that the normalization of �j;k is equivalent to diagonal precondition-

ing applied to the �nite element mass matrix.

Lemma 2 The sequence of bases f�jgj from Example 4 is uniformly stable
in L2(0; 2).

Proof:

The discretized matrix A�j corresponds to the diagonally scaled �nite ele-
ment mass matrix, and is a symmetric tridiagonal matrix consisting of 1 on
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1 2 63 4 5 7 8 9

Figure 4.1: The linear �nite element basis for level j = 3 with 8 elements
and 9 nodes.

the diagonal and 1=4 on the o� diagonals. Using Gershgorin's theorem, the
eigenvalues for A�j lie in the interval [1=2; 3=2] giving

1

2
kcjk

2

`2 � kcTj �jk
2

L2 �
3

2
kcjk`2 ;

and cond(A�j ) � 3.

Recall the norm and semi-norm for the Sobolev space H1 for one space
dimension are

kuk2H1 = ku0kL2 + kukL2

juj2H1 = ku0kL2 :

Theorem 1 (Poincar�e-Friedrich) For bounded domains, the Hm norm and
semi-norm are equivalent in the sense that there exists constants �; � > 0
such that

�jujHm � kukHm � �jujHm for u 2 Hm
0 :

Remark 5 The stability associated with the �nite element basis in L2 is
consistent with the empirical observation that the consistent mass matrix is
well behaved in terms of its condition number. In practice, this is reected
in the ability to easily solve mass matrix dominated problems with simple
iterative techniques.

Lemma 3 After re-normalization with respect to the H1 semi-norm, the se-
quence of bases f�jgj from Example 4 is not uniformly stable in H1

0 (0; 2).
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Proof:

Using the equivalence of the norm and semi-norm, we will construct a se-
quence of vectors fcjgj for which uniform bounds are not possible. If

cj = (

2j+1�1z }| {
1; 1; 1; : : : ; 1; 1) for j = 0; 1; 2; : : : ;

then

kcjk
2

`2 = 2j+1 � 1 and jcTj �jj
2

H1 = 1 for j = 0; 1; 2; : : : :

Example 5 Hierarchical Schauder Basis: Let � and V0 be the same as in
Example 4 and let

Wj = spanf�j;k; k = 0; 2; 4; : : :2j+1 � 2g

Vj = V0

jM
k=1

Wk

	j =
�
�0;0; �1;0; �1;2; : : : ; �j;0; �j;2; : : : ; �j;2k+1�2

�T

where
L

is the direct sum. The hierarchical basis for j = 3 is shown in
Figure 4.2.

Lemma 4 After re-normalization with respect to the H1 semi-norm, the se-
quence of bases f	jgj from Example 5 is uniformly stable in H1

0(0; 2).

Proof:

The H1 semi-norm of f	jgj is equivalent to the L2 norm of the orthogonal
Haar wavelet basis. The Haar basis is an orthogonal basis for L2[0; 2] and
thus A	j is the identity with respect to the semi-norm for j = 0; 1; 2; : : : ;1.

Lemma 5 After re-normalization with respect to the L2 norm, the sequence
of bases f	jgj from Example 5 is not uniformly stable in L2(0; 2).
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1 2 63 4 5 7 8 9

Scale 2

Scale 1

Scale 0

d)

c)

b)

a)

Figure 4.2: The hierarchical Schauder basis for level j = 3 showing a) the
composite basis for 8 elements and 9 nodes, b) the basis functions for scale
2, c) the basis functions for scale 1, and d) the basis functions for scale 0.
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Proof:

De�ne the sequence cj which gives the hat function centered at one with
support [1� 2j; 1 + 2j] as

cj = (1;�1=2;�1=2; 0;�1=4;�1=4; 0; 0; 0; 0;�1=8;�1=8; 0; 0; 0; : : :) :

Thus,

kcjk
2

`2 � 1;

kcTj 	jk
2

L2 =
2

3

1

2j
:

4.2 Wavelet-Galerkin Method

In this section, a brief overview of the tensor product formulation for the
Galerkin method is presented with \experimental" comparisons of the linear
�nite element and the hierarchical Schauder bases. We begin by de�ning the
Frobenius product which generalizes the outer product of two matrices and
gives a convenient general framework for the two-dimensional calculations.

De�nition 4 Frobenius Product: The Frobenius product
F
� of two rectangular

matrices A and B of dimensions m�n and r� s respectively is the mr� ns
matrix de�ned by

A
F
� B := (Ab(i; j))i;j =

0
BBBB@

Ab1;1 Ab1;2 � � � Ab1;s
Ab2;1 Ab2;2 � � � Ab2;s
...

...
. . .

...
Abr;1 Abr;2 � � � Abr;s

1
CCCCA :

Remark 6 Given rectangular matrices A;B and C with B and C having
the same dimensions, the following are easily veri�ed:

A
F
� B 6= B

F
� A for A 6= B
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(A
F
� B)T = AT F

� BT

(B + C)
F
� A = B

F
� A+ C

F
� A

A
F
� (B + C) = A

F
� B + A

F
� C:

De�nition 5 Column stack: The column stack operator
!

() of a rectangular
matrix C of dimension m�n with column vectors c1; c2; : : : ; cn is the mn�1
vector de�ned by

!

C :=

0
BBBB@

c1
c2
...
cn

1
CCCCA :

The inverse of the column stack operator will be denoted by
 

().

Remark 7 The Frobenius product is used here to permit the direct appli-
cation of the one-dimensional wavelet transform in the development of the
multi-scale mass and sti�ness operators. The multi-scale �nite element pre-
sented in subsequent sections illustrates the direct use of the multi-scale basis
functions for the generation of the multi-scale operators.

4.2.1 The Model Problem

In this section, the one and two-dimensional formulations are presented. For
notational convenience the bases are con�gured as a vector in 1-D and a
matrix in 2-D. Given a basis �(x) in 1-D, we form the 2-D tensor product
basis, �(x; y), using the Frobenius product as follows

�(x; y) := �(x)
F
� �(y)T

=

0
BB@

�1(x)�1(y) �1(x)�2(y) � � � �1(x)�n(y)
...

. . .
...

...
�n(x)�1(y) �n(x)�2(y) � � � �n(x)�n(y)

1
CCA :

The boundary value problem with homogeneous Dirichlet boundary con-
ditions is

���u+ u = f on 
 (4.1)

u = 0 on �:
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The discrete formulation of (4.1) is

1-D:
(Mk + �Kk)c = f�k ;

Mk :=
�Z



�ik(x)�

j
k(x)dx

�
i;j

Kk :=
�Z



@x�

i
k(x)@x�

j
k(x)dx

�
i;j

f�k :=
�Z



f(x)�jk(x)dx

�
j
:

2-D:

(M2d
k + �K2d

k )
!

Ck=
!

F�
k ;

where

M2d
k = Mk

F
� Mk

K2d
k = Mk

F
� Kk +Kk

F
� Mk

!

F�
k =

�!�Z


f(x)�ik(x)�

j
k(y)dxdy

�
i;j
:

For Galerkin formulation, uk; vk 2 Vk
finite
� H1

0 , where �k is a �nite
dimensional basis for the subspace Vk. Here, uk = cTk�k(x) and u2dk =
�k(x)

TCk�k(y) for one and two dimensions respectively.

4.2.2 1-D Comparison: Schauder vs. Linear Finite El-

ement

With the Galerkin formulation for the model problem established, a compar-
ison between the hierarchical basis and the linear �nite element basis on a
uniform discretization is presented. It should be noted that the hierarchical
Schauder basis retains its properties for a non-uniform grid as well. In Figure
4.3, the non-zero entries of the mass and sti�ness matrices are illustrated for
both the Schauder and the linear �nite element bases. The non-zero struc-
ture of the mass matrix for the Schauder basis has been termed a \�nger
diagonal matrix".
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Figure 4.3: The nonzero entries in the mass and sti�ness matrices for both
the Schauder and linear �nite element bases for a mesh with 64 nodes.
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Number of non-zeros in the 1-D mass and sti�ness matrices.
Basis-matrix Level Unknowns Non-zeros

Linear Finite Element { Mk k N 3N � 2
Linear Finite Element { Kk k N 3N � 2

Schauder { Mk k N (2k � 1)(N + 1) + 3
Schauder { Kk k N N

Table 4.1: Formulas for the number of non-zeros in the 1-D mass and sti�ness
matrices where N = 2k+1 � 1.

The number of non-zeros can be calculated for the mass and sti�ness
operators for both the Schauder and �nite element bases and are shown in
Table 4.1. Because the Schauder basis diagonalizes the sti�ness, the storage
is N for the the diagonal, while the �nger-diagonal mass matrix, although
sparse, requires increased storages relative to the tri-diagonal �nite element
mass matrix.

Attention is now turned to the condition number associated with each op-
erator. In general, the �nite element mass matrix and the Schauder sti�ness
matrix are both well conditioned operators. In fact, the Schauder sti�ness
is ideal since this choice of basis makes the sti�ness operator diagonal. In
contrast, the �nite element sti�ness and the Schauder mass matrices are both
poorly conditioned operators. To be more precise, the �nite element basis is
uniformly stable in L2, but it is not in H1. In contrast, the Schauder basis
is uniformly stable in H1, but it is not stable in L2. Again, the concept of a
stable basis is de�ned in x4.1.

In order to illustrate the di�erences between the �nite element and the
Schauder bases, consider the condition numbers associated with the mass and
sti�ness operators for the �nite element and Schauder bases shown in Table
4.2. Here, multiple levels of mesh re�nement are considered with k = 1
corresponding to a mesh with 3 nodes (2 elements). The growth of the
condition numbers for Kk is seen to be proportional to O(h�2) for the linear
�nite element bases, while the condition numbers for the mass matrix are
bounded asymptotically at 3. The condition number associated with the
combined mass and sti�ness operator is dominated by the sti�ness for the
�nite element basis in this case since � = 1. In contrast, the mass matrix for
the Schauder basis yields a condition number that grows approximately as
O(h�3=2) while the condition number for the sti�ness is uniformly bounded at
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Condition Numbers: 1-D
Level Linear Finite Element Schauder
k Mk Kk Mk +Kk Mk Kk Mk +Kk

1 2.09 6 4 7 1 1.23
2 2.71 25 18 18 1 1.27
3 2.92 103 74 49 1 1.29
4 2.98 414 295 121 1 1.29
5 3.00 1659 1181 288 1 1.29
6 3.00 6640 4724 667 1 1.29
7 3.00 26560 18900 1517 1 1.29

Table 4.2: Condition numbers for the 1-D mass and sti�ness matrices after
diagonal preconditioning.

O(1). Surprisingly, the combined mass and sti�ness operator for the Schauder
basis is also uniformly bounded indicating the dominance of the sti�ness in
this example.

Mass Lumping

An ad-hoc procedure of mass lumping is considered in this section. In a
�nite element setting, mass lumping refers to the row-sum lumping procedure
used to obtain a diagonal mass matrix. The use of a lumped mass matrix can
have deleterious e�ects, particularly for problems with a dominant hyperbolic
character.19,45 Here, the interest in mass lumping is due to the computational
gains that may be obtained for the Schauder mass matrix, i.e., it would
be convenient to have both a diagonal mass and diagonal sti�ness matrix.
However, in the context of a multi-scale basis, the physical interpretation of
mass lumping is not simple, and the idea is perhaps even less well founded
than the use of mass lumping for the linear �nite element basis.

Regardless of these issues, experimentation with mass lumping has sug-
gested that it may be a viable procedure for the multi-scale Schauder basis.
After a brief trial and error process, it was determined that lumping the
mass by summing the values to the left and above the diagonal entry to the
diagonal works the best. Thus, after a simple vector divide and a multi-scale
reconstruction, an approximation to the solution is obtained. Inspection of
the resulting approximate wavelet coe�cients obtained by the lumping pro-
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cedure indicated that a small correction to the largest wavelet coe�cients
can dramatically improve the solution quality. This process amounts to per-
muting the rows and columns of A := Mk + �Kk with respect to the largest
lumped approximate wavelet coe�cients and solving for these coe�cients
with a correction from the smaller \lumped" approximate coe�cients. The
lumped-mass algorithm proceeds as follows.

Algorithm 1 Lumped-Mass Correction Algorithm

1. Lump the mass matrix resulting in a diagonal matrix, AL :=ML
k +�Kk.

2. Calculate the lumped approximate wavelet coe�cients dL by dividing f�

by the diagonal entries of AL.

3. Permute the components of dL so that the largest N coe�cients are at

the top. Let dN be the largest N lumped-approximate wavelet coe�cients

and dR be the remaining coe�cients such that

perm(dL) =

 
dN

dR

!
:

4. Permute the rows and columns of A to match the permutation of dL.

Let the superscript N denote the �rst N rows and R the remaining

rows.

5. Solve the smaller system, i.e., the coarse-grid correction,

perm(A)NdN = perm(f	)N � perm(A)RdR:

In practice, the coe�cients associated with the coarsest grid resolution
tend to be the largest and are the ones that need to be corrected. Thus, the
permutation step can be replaced with a solve of the N coarsest coe�cients
however they are arranged. Figure 4.4 illustrates the e�ectiveness of the mass
lumping for the hierarchical Schauder basis for solving the model problem
with � = 1. Here, � = 1 was chosen because it provides equal weighting
between the mass and sti�ness operators.

Further experimentation with the idea of the row-column lumping has
demonstrated that using the lumped approximate solution at level k and a
correction for the coarsest coe�cients of level k�2 yields signi�cantly reduced
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Figure 4.4: Solutions, u, on 0 � x � 2 using the Schauder basis with mass-
lumping and a) no corrections and b) 3 wavelet coe�cient corrections.

error in H1 when compared to solving the consistent system at level k � 2.
This e�ect is shown in Table 4.3 where the H1 error for the consistent and
lumped-corrected results are compared. Thus, in this algorithm, the mass
lumping can improve the approximation order with respect to the number of
unknowns solved for using the conjugate gradient method.

4.2.3 2-D Comparison: Schauder vs. Linear Finite El-

ement

In two dimensions, the behavior of the Schauder basis changes rather signif-
icantly. Most apparent is the change in the structure of the sti�ness matrix
which is no longer diagonal, but is a �nger diagonal matrix. This is shown
in Figure 4.5 for a 32 � 32 mesh. In addition, the O(1) conditioning for
the discretized 1-D sti�ness matrix becomes O(log(h�2)) in 2-D. Because of
the change in sparsity of the sti�ness matrix and the conditioning, compu-
tational complexity becomes an important issue in the comparison between
the Schauder and linear �nite element bases.

Recall that the system of equations to be solved is

(M2d
k + �K2d

k )
!

Ck=
!

F�
k :
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Figure 4.5: The nonzero entries in the mass and sti�ness matrices generated
with the Schauder and linear �nite element bases in 2-D for a 32� 32 mesh.
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Mass Lumping Comparison
Number of H1 { Error
Unknowns Consistent Lumped

7 3.0467 1.7719E-1
15 3.2727E-1 6.7459E-2
31 7.0667E-1 1.9166E-2
63 1.7120E-2 4.9829E-3
127 4.2464E-3 1.2600E-3
255 1.0594E-3 3.1587E-4
511 2.6467E-4 7.8867E-5
1023 6.6141E-5 1.9565E-5

Table 4.3: Comparison of H1 error for equivalent conjugate gradient method
unknowns for the consistent and lump-corrected solutions for the model prob-
lem with � = 1.

Because M2d
k and K2d

k can be created by the Frobenius product of the 1-D
matrices, the number of non-zero entries in the mass and sti�ness operators
may be easily computed. The formulae for the number of non-zero entries in
the mass and sti�ness operators are shown in Table 4.4.

Number of non zeros in 2-D mass and sti�ness matrices.
Basis{matrix Level Unknowns Non zeros

Linear Finite Element { M2d
k k N2 (3N � 2)2

Linear Finite Element { K2d
k k N2 (3N � 2)2

Schauder { M2d
k k N2 ((2k � 1)(N + 1) + 3)2

Schauder { K2d
k k N2 N((4k � 3)(N + 1) + 7)

Table 4.4: Formulae for the number of non zeros in 2-D mass and sti�ness
matrices where N = 2k+1 � 1.

As mentioned above, in two dimensions, the condition numbers for the
sti�ness matrix using the Schauder basis grows as O(log(h�2)). In contrast,
the condition number for the �nite element sti�ness (using the 2-D bilin-
ear element) grows as O(h�2) regardless of the dimensionality. Table 4.5
illustrates how the condition numbers grow for the model problem.
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Condition Numbers: 2-D
Level Linear-Finite Element Schauder
k Mk Kk Mk +Kk Mk Kk Mk +Kk

1 4 3 3 49 7 8
2 7 13 11 334 18 19
3 9 52 43 2396 49 51
4 9 207 172 14621 121 123

Estimation based on trend
5 9 828 688 102347 303 308
6 9 3312 2752 716429 758 770

Table 4.5: Condition numbers for the 2-D mass and sti�ness matrices after
diagonal scaling.

In order to estimate the computational cost associated with solving the
problem with the Schauder basis, both the number of non-zero entries in
the matrix, and the number of iterations required to solve the problem are
required. Table 4.6 shows the number of non-zero entries and associated
iteration count for the Schauder and linear �nite element bases for the model
problem with 0 � � � 1000. Due to the �nger-diagonal structure of the
hierarchical basis, the number of non-zero entries grows nearly exponentially
for the Schauder basis.

During experimentation with the 2-D Schauder basis, it was observed
that the number of non-zero entries in the sti�ness matrix grows more slowly
than for the mass matrix. This e�ect is shown in Table 4.7 with the iteration
count associated with a Jacobi preconditioned conjugate gradient algorithm.

However, accounting for both the number of non-zero entries, and the
number of iterations, i.e., the number of oating point operations per solve,
the Schauder basis does have a lower overall computational cost for large
problems.

Using these various estimates, Table 4.8 gives an order of magnitude
estimate for the computational complexity for the Schauder and linear �nite
element bases. From this data, the Schauder basis does eventually have a
lower computational cost as shown in Figure 4.6. For the \purely" elliptic
operator, K2d

k , the Schauder basis wins, i.e., has lower computational cost,
for mesh resolution exceeding 105 degrees-of-freedom. In contrast, for the
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Schauder Basis
M2d

k + �K2d
k : Number of CG iterations

Level Unknowns Non zeros � = 0 � = 0:1 � = 1 � = 10 � = 1000
1 9 49 3 3 3 3 3
2 49 729 11 10 10 9 9
3 225 6889 50 27 25 22 22
4 961 51529 187 48 42 37 37
5 3969 335241 488 73 61 52 51
6 16129 1990921 979 107 87 70 59

Linear Finite Element Basis
M2d

k + �K2d
k : Number of CG iterations

Level Unknowns Non zeros � = 0 � = 0:1 � = 1 � = 10 � = 1000
1 9 49 3 3 3 3 3
2 49 361 6 6 7 7 7
3 225 1849 7 13 15 16 16
4 961 8281 6 27 31 31 31
5 3969 34969 5 54 62 63 63
6 16129 143641 3 110 125 126 126

Table 4.6: Jacobi preconditioned conjugate gradient iterations required for
the Schauder and linear �nite element bases in 2-D.

Schauder Basis for K2d
k : Number of PCG iterations

Level Unknowns Non zeros � =1

1 9 33 3
2 49 329 9
3 225 2265 22
4 961 13113 37
5 3969 68985 51
6 16129 342265 59

Table 4.7: Storage requirements and Jacobi preconditioned conjugate itera-
tions for \purely" elliptic model problem.
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M2d
k + �K2d

k case, the Schauder basis does not win until the mesh resolution
exceeds 108.

Mass Lumping in 2-D

For the purposes of this study, the lumped 2-D mass matrix was generated
by lumping the 1-D mass matrix and then forming the 2-D mass and sti�ness
matrices using the Frobenius product. Since the sti�ness matrix is diagonal
for the 1-D Schauder basis, the resulting 2-D mass and sti�ness matrices are
diagonal. In one sense, this is akin to lumping the sti�ness matrix. Although
the row-sum lumping procedure is not valid for the nodal basis, it is valid
for the multi-scale representation of the sti�ness. In other words, the multi-
scale representation of the sti�ness does not retain the \row-sum to zero"
property of the nodal sti�ness matrix. Thus, after doing a vector divide
and a multi-scale reconstruction, the result is a reasonable initial solution.
Figure 4.7 illustrates the lumped-approximation with no correction and the
correction of the largest wavelet coe�cient respectively. Using the lumped-
approximation as an initial solution shows some promise as a component of
an overall solution strategy. For example, the row-column lumping procedure
could be used to generate a good initial solution for an iterative procedure.
As shown in Table 4.9, using the lumped-approximate solution as an initial
guess reduces the number of iterations required to solve the linear system.
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Computational Complexity Comparison
# Unknowns # Non zeros

Basis Level 1D 2D 1D 2D Iter-2D Flops
Lin-FEM k N N2 3N 9N2 N 9N3

Sch-(M + �K) k N N2 2kN 4k2N2 12k 48k3N2

Sch-K k N N2 N 4kN2 12k 48k2N2

Table 4.8: Computational comparison between the linear �nite element and
the hierarchical Schauder basis where N = 2k.

Schauder Basis
M2d

k +K2d
k : Number of PCG iterations w/ initial approx.

Level Unknowns Non zeros � = 0 � = 0:1 � = 1 � = 10 � = 1000
1 9 49 3 3 3 3 3
2 49 729 11 10 9 10 9
3 225 6889 51 26 21 22 22
4 961 51529 178 47 38 33 37
5 3969 335241 494 70 57 48 48
6 16129 1990921 899 101 80 66 56

Table 4.9: Number of PCG iterations using the lumped approximation as an
initial guess.
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Figure 4.6: Number of unknowns versus number of ops
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Exact Solution
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Figure 4.7: The exact and approximate solutions using the lumping proce-
dure with and without wavelet correction for a 32� 32 2-D mesh. (ue is the
interpolant of the exact solution, and uh is the discrete solution.)
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4.3 The Multi-Scale Finite Element

This section outlines the 1-D and 2-D multi-scale �nite element formulations.
The multi-scale element is based upon the Schauder basis with the change-of-
basis incorporated at the element-level in order to make use of the well-known
�nite element assembly procedure.51

4.3.1 Multi-Scale Transformations Revisited

Before embarking on a description of the 1-D multi-scale �nite element, a
brief review and interpretation of the multi-scale transformation is presented.
Recall from x3.2 that

	k =W T
k �k; (4.2)

where Wk is the multi-scale transformation operator.

In order to make this transformation concrete, consider the following
example. Beginning with a 1-D grid consisting of 5 grid points and 4 linear
elements, the nodal basis will be decomposed into a coarse-grid consisting of
two elements and the associated \pseudo-wavelets". This decomposition is
shown schematically in Figure 4.8.

Remark 8 Here, the term \pseudo-wavelet" refers to the fact that the el-
ements of Wk in the Schauder basis do not possess the property that their
zeroth moment is zero. However, the elements of Wk are used to complete
the subspace at scale k and they are semi-orthogonal in an H1 sense so the
term pseudo-wavelet seems appropriate.

In this example, the wavelet transform, 	0 = W T
1 �1, is

8><
>:
�30
 1
0

 2
0

9>=
>; =

2
64 1=2 1 1=2

1 0 0
0 0 1

3
75
8><
>:
�21
�31
�41

9>=
>; ; (4.3)

where the subscript indicates the scale, and the superscript indicates the
node number. From this, it is clear that the wavelet transform performs
an averaging procedure to obtain the coarse-grid basis elements, �0, and an
injection to obtain the coarse-grid pseudo-wavelets, 	0.
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The decomposition of nodal variables, u, may be accomplished with the
wavelet transform as well. Here, the inverse transform is required to obtain
the coarse-grid coe�cients

�u = W�1u; (4.4)

where �u is the multi-scale or incremental component of the �eld. Relying
on the inverse wavelet transform is impractical because the orthogonality
constraint between the wavelets and scaling functions have been relaxed in
the Schauder basis. However, incorporating the Schauder basis at the element
level will yield solution algorithms that compute the multi-scale solution
directly and rely only on the reconstruction algorithm, i.e., u =W�u. Thus,
given a multi-scale representation of the �eld that corresponds to the multi-
scale basis elements in Figure 4.8, the reconstruction algorithm is simply

8><
>:
u21
u31
u41

9>=
>; =

2
64
1=2 1 0
1 0 0
1=2 0 1

3
75
8><
>:

u30
�u10
�u20

9>=
>; : (4.5)

Thus, the reconstruction algorithm relies on data at both the coarse grid
and the detail from the \pseudo-wavelets", �u, at the �ner scales. These
concepts are carried over to the �nite element methodology where the recon-
struction algorithm is applied at the element level.

As an aside, the wavelet transform is comprised of two components and
both may be viewed in terms of a discrete convolution. Using the nomencla-
ture introduced in Chapter 3, T1 = [H1jG1], where

H1 =

2
64 1=2

1
1=2

3
75 ; (4.6)

and

G1 =

2
64 1 0
0 0
0 1

3
75 : (4.7)

In this simple example of a two-scale decomposition,W1 = T1, but in general,
the wavelet transform is computed recursively as

Wk = Tk

"
Tk�1 0
0 Ik�1

#
� � �

"
T1 0
0 I1

#
: (4.8)
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Figure 4.8: One dimensional two-scale decomposition of the �nite element
nodal basis.
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4.3.2 One-Dimensional Element

The description of the multi-scale element begins with the linear �nite ele-
ment for which the shape functions are

Ni =
1

2
(1� �i�): (4.9)

Here, � is the natural coordinate, �i is the nodal value of the natural coordi-
nate, i = 1; 2, and �1 � � � 1 for the linear element.

The concept of scale is introduced at the element level by injecting degrees-
of-freedom (DOF) that are supported by the \pseudo-wavelets" of the Schauder
basis. The 1-D multi-scale element is shown in Figure 4.9 where a single \in-
ternal" degree-of-freedom located at � = 0 in the element is introduced at
Scale-1, two DOF are introduced at Scale-2, and four DOF at Scale-3.

At Scale-1, the pseudo-wavelet is

 1(�) =

(
1 + � if �1 � � � 0
1� � if 0 � � � 1:

(4.10)

More generally, the pseudo-wavelets for the multi-scale DOF may be written
in terms of the translates and dilates of  (�) as

 k(�) =  (~�) (4.11)

where
~� = 2k�1(1 + �)� 2j � 1; (4.12)

and
22�kj � 1 � � � 22�kj + 21�k � 1

22�kj + 21�k � 1 � � � 22�kj + 22�k � 1:
(4.13)

Here k indicates the scale, and j indicates the translates in the element
parametric space (�1 � � � 1).

The derivatives of the shape functions yield constant functions that are
orthogonal to the derivatives of the pseudo-wavelets at all scales. The deriva-
tives of the pseudo-wavelets yield Haar wavelets as illustrated in Figure 4.9,
and at any given scale they are orthogonal with the derivatives at all other
scales in the multi-scale element.

The reconstruction algorithm may be viewed as an element-by-element
procedure that relies only on the multi-scale information in each element.
The reconstruction is shown schematically in Figure 4.9 where the DOF
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Figure 4.9: Basis elements and their piecewise derivatives for the one dimen-
sional multi-scale element with three re�nement scales. The derivatives have
been scaled by 1=k for scales k = 1; 2; 3.



92 CHAPTER 4. THE SCHAUDER BASIS

located at � = �3=4 is computed as a linear combination of the detail cor-
rections, �u, at scales 0 � 3. Here, a canonical node-numbering scheme is
used where the node numbers are n1; n2 at Scale-0, n3 at Scale-1, n4; n5 at
Scale-2, etc. as shown in Figure 4.9. That is to say, for k > 0, the node
numbers are set according to the scale as 2 + 2k�1 + j.

With this numbering scheme, the reconstruction for the DOF located at
n6 may be written as

u6 = N1u
1
0 +N2u

2
0 +  3

1�u
3
1 +  4

2�u
4
2 +  6

3�u
6
3; (4.14)

where each of the basis elements is evaluated at � = �3=4. Thus, the re-
construction algorithm begins with the interpolant of the coarse-grid solution
and injects re�nements, or detail, up to the desired scale. The reconstruction
may be written more generally as

u2+2
k�1+j

k =
NnpeX
i=0

Niu
i
0 +

NscaleX
k=1

 2+2k�1+j
k �u2+2

k�1+j
k (4.15)

where the basis elements (Ni, and  k) are evaluated at �k;j corresponding to
the DOF location in the parent element.

The Multi-Scale Operators

The computation of the sti�ness for a bilinear operator, a(u; v), is a straight-
forward procedure that begins with the coarse-grid sti�ness.

At the element level, i.e., Scale-0, this is simply

Ke
0 =

1

h

"
1 �1

�1 1

#
; (4.16)

where h is the node-spacing for the coarse-grid. Making use of orthogonality,
the sti�ness entries for the scale DOF, i.e., for k > 0, are

K2+2k�1+j
k =

2k+1

h
: (4.17)
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The resulting element-level sti�ness matrix with scale DOF included is

Ke =
1

h

2
666666666664

1 �1
�1 1

4
8

8
. . .

2k+1

3
777777777775
: (4.18)

With this form of the element sti�ness, only the coarse-scale terms contribute
to the element assembly procedure since all internal DOF simply require a
point evaluation and do not rely on information outside the element.

The mass matrix computation is somewhat more involved because it re-
quires the calculation of inner-products that involve the basis elements across
scale. The computation of the multi-scale mass matrix consists of the follow-
ing

M e
0 =

Z e




NiNjd


M01 =
Z e




Ni 1d


M10 =
Z e




 1Njd
 (4.19)

M12 =
Z e




 1 2d


...

This series of element-level integrals leads to the �nger-diagonal matrix struc-
ture described in the previous sections of this chapter. Figure 4.10 shows the
composite �nger diagonal structure with the inset coarse-grid element mass
matrix.

The row-column lumping procedure is shown schematically in Figure 4.10
for the multi-scale DOF at n7 in the element. Note that the traditional row-
sum lumping for the coarse-grid mass matrix can be used for the nodes
corresponding to the coarse-grid, but this type of mass lumping has not been
e�ective for the multi-scale DOF in the element.
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Figure 4.10: Finger diagonal structure of element mass matrix.

4.3.3 A Multi-Scale Algorithm

The application of the one-dimensional multi-scale �nite element with the
row-column mass lumping lends itself to the following adaptive solution strat-
egy.

Algorithm 2 Multi-Scale Solution Algorithm

1. Form the coarse-grid operators, M0, and K0, and solve the coarse-grid
problem.

2. For each element, inject one scale DOF and solve for the wavelet co-
e�cient, �u1. Here, the row-column mass lumping is used to permit
point evaluation of the scale solution.

�uk = [Mk + �Kk]
�1Fk (4.20)

3. Compute the termination measure for the scale DOF injection. One
possibility for the termination measure relies on stopping when the scale
DOF are small relative to the overall solution. (Other stopping criteria
have not been investigated.)

� =
�u2+2

k�1+j
k

kukk
(4.21)
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4. Repeat 1 { 3 until � is smaller than some user-speci�ed criteria.

5. Perform the element-by-element multi-scale reconstruction using Eq.
(4.15).

4.3.4 Example 1-D Calculation

As an example of the multi-level algorithm, consider the following problem.

�u00(x) = 1 on [0; 1]; (4.22)

with essential boundary conditions

u(0) = 0; u(1) = 0: (4.23)

In this example, three scale solutions were computed. Scale-0 corresponds
to the coarse-grid solution using two elements. Scale-1 corresponds to the
injection of one multi-scale DOF per element, while Scale-2 corresponds to
the injection of two multi-scale DOF per element. This may be seen in Figure
4.11 where the multi-scale DOF are shown relative to the elements (e1; e2) of
the one-dimensional grid.

In this example, the multi-scale DOF for k = 1 correspond to �u4
1
=

�u5
1
= 1=32. For k = 2, the multi-scale solution consists of �u6

2
= �u9

2
=

1=128, and �u7
2
= �u8

2
= 1=128. After the reconstruction procedure, the

scale DOF yield solution values that interpolate the exact solution { a result
that is expected for linear problems. Similar results have been obtained for
problems with non-linear source terms, and for problems with inhomogeneous
essential and natural boundary conditions.

Remark 9 The algorithm presented for the 1-D multi-scale element pos-
sesses the property that all scale injection relies only on element-local data
and does not require a re-solve of the coarse-grid problem to improve the solu-
tion. For problems that are mass-matrix dominated, the correction procedure
outlined earlier in this chapter may be required when the row-column lumped
mass is used.



96 CHAPTER 4. THE SCHAUDER BASIS

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.0 0.2 0.4 0.6 0.8 1.0

u

x

Exact Solution
Scale - 0
Scale - 1
Scale - 2

2ee1

1 3582746 9

Figure 4.11: Exact solution and scale solutions for k = 0; 1; 2. (Node numbers
correspond to the insertion of multi-scale DOF).
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4.3.5 Two-Dimensional Element

Attention is now turned to the 2-D multi-scale element. As in the 1-D case,
the 2-D bilinear element provides the element-level components of the global
basis functions. However, the two-dimensional case is somewhat more com-
plicated.

To begin, Figure 4.12 shows a four-patch of bilinear �nite elements with
the injected multi-scale DOF corresponding to k = 1. As in the 1-D element,
the shape functions are treated as k = 0 and associated with the coarsest
grid resolution. The con�guration of the multi-scale DOF in the parent
element is shown in Figure 4.13. Like the shape functions, the components
of the pseudo-wavelets at the element level take on a value of 1 at the DOF
location, and they are zero at all other node locations. Only one of the
multi-scale DOF is completely supported in the two-dimensional element.

The shape functions for the 2-D bilinear element are

Ni =
1

4
(1 + �i�)(1 + �i�); (4.24)

where i = 1; 2; 3; 4, and �1 � �; � � 1. At the �rst scale, k = 1, the
pseudo-wavelets are

 5

1
= (1� j�j)(1� j�j)

 6

1
=

1

2
(1 + �)(1� j�j)

 7

1
=

1

2
(1� j�j)(1 + �) (4.25)

 8

1
=

1

2
(1� �)(1� j�j)

 9

1
=

1

2
(1� j�j)(1� �):

In a more general way, the pseudo-wavelets for the multi-scale DOF may
be written in terms of the translates and dilates of the basis functions at
scale k = 1. The pseudo-wavelets in two-dimensions are

 m

k
(�; �) =  m

1
(~�; ~�); (4.26)

where

~� = 2k�1(1 + �)� 2j � 1 (4.27)

~� = 2k�1(1 + �)� 2j � 1;
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and
0 � j � k � 1

22�kj � 1 � ~� � 22�kj + 22�k � 1
22�kj � 1 � ~� � 22�kj + 22�k � 1:

(4.28)

Here k indicates the scale, j indicates the translates in the element parametric
space (�1 � �; � � 1), and m = 5; 6; 7; 8; 9 for the element-local numbering
of the pseudo-wavelets. With the basis elements de�ned this way, the use
of recursion at the element level can be used to automate the computation
of the mass and sti�ness operators with a given scale of resolution, Nscale.
This type of recursion is illustrated in Figure 4.12.

The performance of the 2-D Schauder basis was presented relative to
the bilinear element in x4.2.3. However several key points are re-iterated
here. First, the orthogonality of derivatives of the pseudo-wavelets between
scales is not preserved in two dimensions { even on an orthogonal grid. The
�nger-diagonal matrices that arise from this discretization lead to extreme
storage costs if the matrices are used without row-column lumping proce-
dures. However, the row-column lumping can be applied to both the mass
and sti�ness operators, albeit only for the rows and columns corresponding
to the multi-scale DOF. In addition, the 2-D multi-scale element is compat-
ible with many h-adaptivity strategies being implemented in �nite element
codes, and the ability to use this element as a change-of-basis preconditioner
is just beginning to be explored.

Remark 10 The numerical performance of the 1-D and 2-D multi-scale el-
ement is identical to the bilinear element since any multi-scale solution can
be cast in terms of the reconstructed solution in the �nite element basis at
the �nest grid scale.

4.4 Summary

The use of a Schauder basis in 1-D and 2-D has been considered with an
emphasis on the stability of the basis. In terms of stability, the �nite element
basis is uniformly stable in L2, but it is not stable in H1. In contrast, the
Schauder basis is uniformly stable in H1, but it is not stable in L2. For the
purely elliptic problems, the Schauder basis is a good choice in terms of a
lower computational cost with respect to a traditional nodal basis. However,
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the bene�t does not occur until the mesh resolution exceeds 105 degrees-of-
freedom when the �nger-diagonal form of the sti�ness operator is used. The
bene�t of the preconditioning of the Schauder basis is not realized for the
M2d

k
+ �K2d

k
case until the mesh resolution exceeds 108 grid points. However,

the use of the row-column lumping procedure may be applied to both the
multi-scale mass and sti�ness operators yielding a solution algorithm that
relies on a predictor with a simple vector divide. The 1-D and 2-D multi-
scale elements provide a simple mechanism for implementing the Schauder
basis in an existing code, albeit with extensions for the insertion of scale
degrees-of-freedom. Although only uniform re�nement at the element level
was presented here, there is no restriction on the spacing of scale DOF in the
multi-scale element.
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Chapter 5

Reproducing Kernel Methods

The Reproducing Kernel Particle Method (RKPM) has many attractive
properties that make it ideal for treating a broad class of physical prob-
lems. RKPM may be implemented in a \mesh-full" or a \mesh-free" manner
and provides the ability to tune the method, via the selection of a window
function and its associated dilation parameter, in order to achieve the req-
uisite numerical performance. In RKPM, the dilation parameter plays a
role similar to the dilation parameter in a scaling function although its im-
plementation is somewhat di�erent from traditional scaling functions that
satisfy a two-scale di�erence relationship. RKPM also provides a framework
for performing hierarchical computations making it an ideal candidate for
simulating multi-scale problems. Although the method has many appeal-
ing attributes, it is quite new and its numerical performance is still being
quanti�ed with respect to more traditional discretization techniques.

In order to assess the numerical performance of RKPM, detailed studies of
the method on a series of model partial di�erential equations has been under-
taken. The results of von Neumann analyses for RKPM semi-discretizations
of one and two-dimensional, �rst and second-order wave equations are pre-
sented in the form of phase and group errors. Excellent dispersion char-
acteristics are found for the consistent mass matrix with the proper choice
of dilation parameter. In contrast, row-sum lumping the mass matrix is
demonstrated to introduce severe lagging phase errors. A \higher-order"
mass matrix improves the dispersion characteristics relative to the lumped
mass matrix but also yields signi�cant lagging phase errors relative to the
fully integrated, consistent mass matrix.

103
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5.1 Formulation

This section begins with a brief overview of the reproducing kernel particle
formulation. A detailed presentation of RKPM may be found in the work by
Liu et al.17,18,55,62{73,96 Following the overview is a derivation of the formulae
for computing the normalized phase and group speed associated with semi-
discretizations of the model hyperbolic partial di�erential equations.

5.1.1 Reproducing Kernel Particle Formulation

For the sake of clarity, the following overview is limited to one spatial di-
mension although the formulation may be easily extended to higher dimen-
sions.17,67,68 The RKPM formulation begins with the notion of a kernel
approximation of a function, U , on a domain, 
,

UR(x) =
Z


U(�)'(x� �)d�; (5.1)

where ' is the kernel function and UR is the continuous approximation to
U .67,71 In order to address discrete problems, numerical quadrature (i.e.,
trapezoidal or particle integration) is used to evaluate Eq. (5.1) as

Uh(x) =
NpX
i=1

di'(x� xi)�xi; (5.2)

where Uh is the discrete analogue of UR, di are the particle coe�cients, and
Np is the total number of particles in the domain, 
.67 In general, the coef-
�cients, di, are di�erent from the value of the function at particle i because
the RKPM basis is non-nodal, that is, it does not posses the Kronecker-delta
property.

One of the most commonly used RKPM kernel functions, and the one
used here, is the cubic spline. In one-dimension, the cubic spline kernel
function is

'(z) =

8>><
>>:

2
3r�x

h
1� 3

2
z2 + 3

4
z3
i
z < 1

1
6r�x

[2� z]3 1 � z < 2;
0 z � 2

(5.3)

where z = jx� xij =(r�x), xi is the position of particle i, �x is the particle
spacing, and r is the re�nement parameter.3,67,68 The re�nement parameter
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controls the dilation of the kernel function, and subsequently, the domain
of inuence for the function. For example, consider the cubic-spline window
function with a uniform particle distribution. In this case, r = 1=2 results in
support over 3 particles, while r = 1 results in support over 5 particles. In
this work, the optimal dilation parameter, r = 1:14, established by Liu and
Chen65 to minimize aliasing error in terms of energy, is used.

In general, Eq. (5.2) will not exactly reproduce an arbitrary polynomial.
The accurate reproduction of polynomials to order p is ensured by introducing
a modi�ed window function,

'(x� xi) =
pX

k=0

�k(x)'(x� xi) (x� xi)
k; (5.4)

where �k(x) represents a set of correction functions that vary within the
domain, 
.67,68 The modi�ed window function, ', replaces ' in Eq. (5.2)
yielding

Uh(x) =
NpX
i=1

'(x� xi)di�xi: (5.5)

The correction functions are determined by substituting Eq. (5.4) into
Eq. (5.5) and requiring that the resulting kernel approximation reproduce
polynomials to the desired order. For linear consistency, the following con-
straints are required,

NpX
i=1

[�0(x) + �1(x) (x� xi)]'(x� xi)�xi = 1 (5.6)

NpX
i=1

[�0(x) + �1(x) (x� xi)]'(x� xi)xi�xi = x: (5.7)

From these equations, �0(x) and �1(x) may be calculated in a point-wise
fashion in the domain. With the correction functions in hand, the requisite
derivatives for a Bubnov-Galerkin procedure may be computed. Although
the calculation of these derivatives is rather straight forward, the algebra
required is signi�cant and the reader is directed to the work of Liu et al.17,67,68

for details.

Remark 11 As a brief aside, consider the limiting case where the linear
\hat function" is used as the kernel function instead of the cubic-spline of
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Eq. (5.3). In this case, the window function is

'(z) =

(
1�z
r�x

z < 1
0 z � 1

(5.8)

If the dilation parameter is unity, then the resulting basis elements are
simply the linear �nite element functions and yield the usual form of the
mass and sti�ness operators.

In the ensuing dispersion analysis, tensor products of Eq. (5.3),

~'

 
x� xi
r�x

;
y � yj
r�y

!
= '

�
x� xi
r�x

�
'

 
y � yj
r�y

!
; (5.9)

are used to generate a two-dimensional kernel function with rectangular sup-
port.3,68 The tensor-product kernel function in Eq. (5.9) is used with bi-
linear consistency enforced for the two-dimensional dispersion results pre-
sented in x5.2.3.

5.1.2 RKPM Two-Scale Decomposition

The use of the RKPM window functions in a multi-resolution analysis is
briey demonstrated in this section. Following the procedure outlined in
Chapter 1, the projection of a discrete solution, Uh, onto the subspace, Va,
may be written as

PaU
h
a = P2aU

h
2a +Q2aU

h
2a; (5.10)

where a = r�x is the dilation parameter and relies on the re�nement pa-
rameter and particle spacing. Here, the projection at scale-a is simply

PaU
h =

NpX
i=1

'(x� xi)U
h
i �xi: (5.11)

The projection, P2a, may be thought of as the providing the represen-
tation of the �eld at twice the scale, or at half the grid resolution. The
projection, Q2a, may be viewed as the detail or the \peeled-o�" part of
PaU

h.
Unlike the projections discussed in Chapter 1, the RKPM projections are

not necessarily idempotent. The wavelets associated with the Q-projection
are de�ned as
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� 2a = 'a � '2a: (5.12)

Although these wavelets satisfy the property that the �rst moment is zero,
the rigorous enforcement of orthogonality and the satisfaction of a two-scale
di�erence relation has been abandoned.

Example 6 The two-scale decomposition of a step-function using the \linear
hat" function for the window function is shown in Figure 5.1. Here, the grid
consists of 11 uniformly spaced particles with 0 � x � 1. In this case, the
original signal was represented on the grid using linear hat functions with
r = 1, i.e., a = �x. The coarse scale representation of the original signal is
shown with the wavelet projection at scale-2a.
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Figure 5.1: One-dimensional two-scale decomposition based on dilation of
the window function.
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Remark 12 One interesting and useful aspect of the RKPM two-scale de-
composition is that the �eld at scale-2a may be represented on the original
grid. That is, there is no inherent down-sampling of the �eld that is required
making wavelet projection useful for detecting steep gradients automatically.

5.1.3 von Neumann Analysis

The accurate simulation of wave propagation or advection dominated pro-
cesses using discrete numerical schemes hinges upon having a clear under-
standing of the constraining numerical errors, and su�cient computational
resources to e�ect solutions at the requisite grid scale. Examples of this
may be seen when attempting to simulate wave propagation in an acous-
tic medium, or compute turbulent ow �elds via direct numerical simulation
(DNS) or large eddy simulation (LES). In physical problems with a dominant
hyperbolic character, controlling the dispersive errors, i.e., phase and group
speed errors, to within 5% can require 8 to 10 grid points per wavelength with
traditional �nite di�erence or lumped-mass �nite element methods. Thus,
the simulation of hyperbolic problems is limited by the wavelength that the
grid can accurately represent. Further, a failure to respect the so-called grid
Nyquist limit can introduce deleterious aliasing e�ects that corrupt the sim-
ulation �delity.

In general, the application of discrete methods to hyperbolic partial dif-
ferential equations can result in solutions that are dispersive even though the
physical model for wave propagation is non-dispersive. Dispersion errors are
typically characterized by the di�erences between the apparent, i.e., numeri-
cal, phase and group speed of waves and their exact counterparts. Phase and
group speed errors represent some of the most constraining numerical errors
associated with the simulation of wave propagation and advection dominated
ows.

In the context of linear acoustics, the phase speed is the speed at which
individual waves propagate. In the absence of dispersion, i.e., for a per-
fect acoustic uid, this is simply the sound speed. In a dispersive acoustic
medium, the phase speed is a function of the frequency or wavelength of the
propagating wave. Thus, phase error may be viewed as a measure of the
inuence of numerical dispersion on the apparent sound speed relative to the
true sound speed.

In contrast to the phase speed, the group speed describes the propagation
of wave packets that are comprised of short wavelength signals modulating
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a slowly varying, longer wavelength envelope. Because the energy associated
with a wave packet travels with the packet, the group speed is often referred
to as the \energy" velocity. The group speed is also referred to as the speed
of modulation. For a non-dispersive medium the phase and group speed are
identical.

In discrete wave propagation problems, the group speed may be used to
study and explain the propagation of short wavelength oscillations that are
typically 2�x in wavelength where �x is the characteristic mesh spacing.
Vichnevetsky100,101 has demonstrated that spurious 2�x oscillations, that
are induced by rapid changes in mesh resolution and at physical boundaries,
propagate at a group speed associated with a 2�x wavelength.

The investigation of the dispersive errors associated with discrete solu-
tions is not new and has been used by numerous researchers to characterize
the performance of numerical methods. A brief review of earlier dispersion
analyses may be found in Christon.19 The focus of the current work is upon
characterizing the dispersive nature of the reproducing kernel particle method
for hyperbolic problems.

With the RKPM formulation outlined, the weak forms of three model par-
tial di�erential equations (two hyperbolic and one parabolic) are presented
along with a description of the Fourier analysis. For generality, the numeri-
cal dispersion and di�usion relations are generated for the two-dimensional
model equations from which their one-dimensional counterparts are obtained.

The two-dimensional �rst-order wave, second-order wave and parabolic
partial di�erential equations are, in Cartesian coordinates,

@U

@t
+ cx

@U

@x
+ cy

@U

@y
= 0 (5.13)

@2U

@t2
� c2

"
@2U

@x2
+
@2U

@y2

#
= 0; (5.14)

and,
@U

@t
� �

"
@2U

@x2
+
@2U

@y2

#
= 0: (5.15)

Here t is time, U is the dependent variable, c is the wave speed, (cx; cy) =
(c cos(�); c sin(�)) are the advection velocity components, � is the wave vector
direction measured from the x-axis, and � is the di�usivity.

The semi-discrete forms of Eq. (5.13) through (5.15) are required for the
following analysis. The details for obtaining the weak form of these equations
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are well known,51 and are not repeated here. The semi-discrete forms of the
�rst-order wave, second-order wave and parabolic equations are,

M_d +A (c)d = 0; (5.16)

M�d +K (c)d = 0; (5.17)

and,
M_d +K (�)d = 0; (5.18)

where A is the advection operator, and K is the sti�ness matrix. The gen-
eralized mass matrix is de�ned as

M = Mc + (1� )Ml; (5.19)

where Mc and Ml are the consistent and row-sum-lumped mass matrices
respectively, and 0 �  � 1 is the lumping parameter.

It should be noted that some form of numerical quadrature is required
for the evaluation of A, K and M above. This integration may be per-
formed by placing a grid of quadrature points overlaying the nodal points
and employing, for instance, Gaussian quadrature. Alternatively the nodal
points can themselves be used as the quadrature points with the appropriate
weight being the variational volume associated with the node (termed trape-
zoidal integration here). Both integration techniques and their e�ects on the
discretization errors are considered.

Proceeding with the Fourier analysis, a plane wave solution is placed on
an in�nite span (alternatively, on a �nite domain with periodic boundary
conditions) in order to compare the exact and semi-discrete solutions. It can
be shown that the particle values, Uh, satisfy the same evolution equations as
the coe�cients, d, when a periodic domain and symmetric window functions
are used.101 Thus, Eq. (5.16) and (5.17) may be rewritten in terms of Uh

for the purposes of this analysis, and the plane wave solution to Eq. (5.13)
and (5.14) may be expressed as

U(x; y; t) = U0 exp[�k(x cos(�) + y sin(�))� �!t]: (5.20)

Here, U0 is the amplitude, k is the wave number, � is the propagation direc-
tion of a plane wave measured from the x-axis, and � =

p�1.
For the parabolic equation, Eq. (5.15), the particle values also satisfy the

same evolution equation as the particle coe�cients, d, and so the periodic
solution to the parabolic equation is

U(x; y; t) = U0(x; y) exp[��k2t]: (5.21)
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Remark 13 The use of the term \von Neumann" analysis for the parabolic
equation is somewhat misleading because the partial di�erential equation does
not admit wave solutions under ordinary circumstances (although the authors
are aware of a hyperbolic theory for heat conduction). Instead, the interpre-
tation relies on consideration of the fact that the di�usivity is now a function
of wavelength, i.e., � = �(�). With this in mind, for each wavelength, i.e.,
Fourier mode, there is an associated di�usivity. Thus, the analogue to disper-
sion error for the hyperbolic equations is the observation that the wavelength
dependent rate of di�usion leads to errors in the overall rate of di�usion.

Now, considering a mesh with nodes equally spaced at intervals of �x
and �y, any node (i +m; j + n) at coordinates (xi+m; yj+n) may be located
relative any other node (i; j) as xi+m = xi + m�x and yj+n = yj + n�y.
Thus, solutions to the semi-discrete hyperbolic and parabolic equations are,

Ui+m;j+n = U0(xi; yj) exp[ik(m�x cos � + n�y sin �)] exp[�i!t] (5.22)

and,

Ui+m;j+n = U0(xi; yj) exp[ik(m�x cos � + n�y sin �)] exp[��k2t]; (5.23)

respectively.
Given an arbitrarily wide kernel function, the semi-discrete forms of the

�rst and second-order wave and parabolic equations for node (i; j) are

nX
l=�n

nX
m=�n

n
M(i;j);(i+l;j+m)

_Ui+l;j+m + A(i;j);(i+l;j+m)Ui+l;j+m

o
= 0; (5.24)

nX
l=�n

nX
m=�n

[M(i;j);(i+l;j+m)
�Ui+l;j+m +K(i;j);(i+l;j+m)Ui+l;j+m] = 0; (5.25)

and,

nX
l=�n

nX
m=�n

[M(i;j);(i+l;j+m)
_Ui+l;j+m +K(i;j);(i+l;j+m)Ui+l;j+m] = 0; (5.26)

respectively. In Eq. (5.24) through (5.26), M(i;j);(p;q), K(i;j);(p;q) and A(i;j);(p;q)

are the mass, sti�ness and advection matrix entries on the row associated
with node (i; j) and the column associated with node (p; q) on a natural
ordered Cartesian grid.
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Substituting the appropriate forms of Eq. (5.22) and (5.23) into Eq.
(5.24) through (5.26) and canceling terms yields,

�i!
nX

l=�n

nX
m=�n

[M(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))] +

nX
l=�n

nX
m=�n

A(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�))) = 0 (5.27)

and,

�!2
nX

l=�n

nX
m=�n

[M(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))] +

nX
l=�n

nX
m=�n

[K(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))] = 0 (5.28)

for the �rst and second-order wave equations and

��k2
nX

l=�n

nX
m=�n

[M(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))] +

nX
l=�n

nX
m=�n

[K(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))] = 0 (5.29)

for the parabolic PDE. The computation of the normalized phase and group
speed for the hyperbolic problems proceeds by solving for the circular fre-
quency, !, and making use of Eq. (5.20). The normalized phase speed asso-
ciated with either semi-discrete equation is  = c=c where c is the apparent
phase speed. Rearranging Eq. (5.27) and (5.28) yields

 1 =
1

ick

Pn
l=�n

Pn
m=�n[A(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))]Pn

l=�n

Pn
m=�n[M(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))]

(5.30)
for the �rst-order wave equation, and

 2 =
1

ck

vuutPn
l=�n

Pn
m=�n[K(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))]Pn

l=�n

Pn
m=�n[M(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))]

(5.31)
for the second-order wave equation.
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The appropriate error measure which arises for the parabolic PDE is the
normalized apparent di�usivity, �=�. Rearranging Eq. (5.29) yields

�=� =
1

�k2

Pn
l=�n

Pn
m=�n[K(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))]Pn

l=�n

Pn
m=�n[M(i;j);(i+l;j+m) exp(ik(l�x cos(�) +m�y sin(�)))]

:

(5.32)
The one-dimensional apparent dispersion and di�usion characteristics

may be obtained from the two-dimensional relations results by setting � = 0
yielding,

 1 =
fa
ckfm

; (5.33)

 2 =
1

ck

s
fk
fm

(5.34)

and,

�=� =
1

�k2
fk
fm

(5.35)

for the apparent phase speed, group speed and di�usivity respectively where,

fa = Ai;i + 2
nX
l=1

sin(kl�x)Ai;i+l (5.36)

fm =Mi;i + 2
nX

l=1

cos(kl�x)Mi;i+l; (5.37)

and

fk = Ki;i + 2
nX

l=1

cos(kl�x)Ki;i+l: (5.38)

The normalized group speed, in one-dimension, is de�ned as � = vg=c,
where vg = @!=@k. Consideration of the normalized group velocity for the
two-dimensional, semi-discretizations introduces signi�cant complexities that
make such analysis beyond the scope of this work.

Using Eq. (5.33) and (5.34), the normalized group speed in one-dimension
is

�1 =
gafm � fagm

cf 2m
; (5.39)

and

�2 =

p
fm

2c
p
fk

gkfm � fkgm
f 2m

(5.40)
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for the �rst and second-order wave equations respectively. Here,

ga = @fa=@k = 2�x
nX

l=1

l cos(kl�x)Ai;i+l (5.41)

gm = @fm=@k = �2�x
nX

l=1

l sin(kl�x)Mi;i+l; (5.42)

and

gk = @fk=@k = �2�x
nX

l=1

l sin(kl�x)Ki;i+l: (5.43)

Unless otherwise noted, the normalized phase and group speed de�ned above
are referred to simply as phase speed and group speed in the remaining text.

Remark 14 There have been no restrictions (other than symmetry) placed
on the form or type of basis functions used to obtain the mass, sti�ness or
advection operators. Thus, Eq. (5.30) through (5.40) are equally valid for
Galerkin formulations that use the RKPM functions or �nite element basis
functions.

5.2 Results

This section summarizes the results of the von Neumann analyses in terms of
phase and group speed for RKPM semi-discretizations of the one-dimensional
model hyperbolic equations followed by phase speed associated with the two-
dimensional equations, and a brief discussion of the analysis for the parabolic
equation. Unless otherwise noted, the normalized phase and group speeds
de�ned in the previous section are referred to simply as phase and group
speed in the remaining text. Both the one and two-dimensional RKPM
formulations use the cubic spline kernel function in Eq.(5.3). Further, the
two dimensional formulation uses the tensor product in Eq. (5.9) to produce a
two dimensional kernel function. Both spatial formulations use the procedure
outlined in x5.1.1 to generate modi�ed window functions that ensure linear
(U(x) = 1 + x; one-dimensional) and bi-linear (U(x; y) = 1 + x + y + xy;
two-dimensional) functions are reproduced exactly.

For the purpose of comparison, results are presented for linear and bi-
linear �nite element (FE) semi-discretizations. Here, the linear and bi-linear
�nite element basis functions were chosen for comparison as they provide the
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same order of consistency as the RKPM discretizations considered. The FE
phase and group speed are calculated using the formulae presented in Section
2.2 with linear �nite element basis functions.

In the discussion that follows, the phase and group speed results are
presented as functions of non-dimensional wave number, k�x=� = 2�x=�.
In order to simplify the discussion, the following nomenclature has been
adopted to identify the the mass matrix and quadrature rule used for both
the FE and RKPM results. The mass matrix is identi�ed as C for consistent
( = 1), L lumped ( = 0), or H higher-order ( = 1=2); cf. Eq. (5.19). The
numerical integration scheme is identi�ed as either F indicating full Gauss
quadrature, or T indicating a trapezoidal rule, i.e., particle integration.

The F nomenclature for \full Gauss quadrature" indicates a 2�2 quadra-
ture rule for the bi-linear �nite element and a 4� 4 quadrature rule for the
RKPM formulation. In the case of the RKPM formulation, the sensitivity of
the matrix entries with respect to the quadrature rule was tested and demon-
strated that the entries did not change appreciably with increased number of
quadrature points beyond 4 � 4. For trapezoidal (particle) integration, the
particle locations are used as quadrature points. Here, the motivation for
consideration of particle integration is the potential reduction in computa-
tional complexity gained by elimination of the background integration mesh
which also results in a truly mesh-free method.

5.2.1 1-D Hyperbolic Equations

In this section, the phase and group speed for the semi-discrete, one-dimensional,
�rst and second-order wave equations are presented.

First-Order Wave Equation

Phase and group speed for the linear �nite element semi-discretizations of
the �rst-order wave equation are presented in Figure 5.2. Results are plotted
for fully integrated, consistent (CF), lumped (LF) and higher-order (HF)
mass matrix formulations. As shown, the FE formulations introduce strictly
lagging phase speed for all wavelengths considered with the CF formulation
delivering smaller phase errors up to the 2�x limit. All three mass matrices
result in a phase speed of zero at 2�x=� = 1, i.e., wavelengths of 2�x are
stationary on the grid.
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Figure 5.2: One-dimensional phase (a) and group (b) speed results for the
�rst-order wave equation, linear �nite element semi-discretization employing
fully integrated, consistent (CF), lumped (LF) mass and higher-order (HF)
matrix formulations.

The �nite element discretizations also yield strictly lagging group speed
for all three mass matrices. However, the lumped mass matrix yields a zero
group speed for 4�x wavelengths while both the CF and HF mass matrices
have zero group speed at shorter wavelengths. The CF formulation performs
better than the LF and HF formulations, i.e., yields smaller group errors for
� � 3�x. All three formulations yield negative group speeds for short wave-
lengths indicating that the energy associated with 2�x wavelength signals
propagates in the opposite direction of the longer wavelength signals. Sur-
prisingly, the LF formulation yields the smallest, albeit still negative, group
speed in the limit of 2�x wavelengths.

Figure 5.3 shows the phase and group speed for the one-dimensional
RKPM semi-discretizations of the �rst-order wave equation. Again, fully
integrated consistent (CF), lumped (LF) and higher-order (HF) mass matrix
formulations are presented. In addition, results are shown for the consistent
mass matrix formulation with particle integration of the advection and mass
matrices (CT). As with the FE results in Figure 5.2, the RKPM method
introduces lagging phase errors over the discrete spectrum of wavelengths.
The consistent mass (CF) formulation performs the best and delivers signif-
icantly better phase speed relative to the FE results presented in Figure 5.2.
In order to quantify the increased performance of the RKPM-CF method,
consider a phase error, � = j1 �  j, of 5% or less to be appropriate for en-
gineering purposes. For the FE-CF method, this criterion corresponds to
4�x or 5 grid-points per wavelength. In contrast, the RKPM-CF and CT
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Figure 5.3: One-dimensional phase (a) and group (b) speed results for the
�rst-order wave equation, Reproducing Kernel Particle semi-discretization
employing full-integration consistent (CF), lumped (LF), higher-order (HF)
and trapezoidal integration consistent (CT) mass matrix formulations.

methods require 2 � 3�x, or approximately 3 � 4 particles per wavelength.
While both the RKPM-CF and CT methods perform quite well, the lumped
and higher-order formulations introduce severe lagging phase errors relative
to their �nite element counterparts.

In terms of the group speed, both the RKPM-CT and CF formulations
are far superior to the LF and HF formulations. Similar to the phase speed,
the CT formulation yields lagging group errors at longer wavelengths than
the CF formulation. However, the trapezoidal mass matrix, CT, avoids the
large negative group speed associated with the fully-integrated, CF, matrix
at 2�x wavelengths. Both the FE-CF and RKPM-CT formulations yield
negative group speed for wavelengths shorter than 3�x, while the RKPM-
CF formulation produces negative group speed for wavelengths shorter than
about 2:5�x. However, the group error associated with 2�x wavelengths for
the RKPM-CF formulation is over 3 times larger than for the FE-CF case and
is 10 times larger than the sound speed. From these results it is apparent that
the RKPM-CT and CF formulations exhibit very good dispersive behavior,
discounting the large negative group speed for the RKPM-CF case, with
consistency identical to the �nite element formulation.

Second-Order Wave Equation

Phase and group speeds for the linear �nite element semi-discretizations of
the second-order wave equation are presented in Figure 5.4 for the fully inte-
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Figure 5.4: One-dimensional phase (a) and group (b) speed results for the
second-order wave equation, linear �nite element semi-discretization employ-
ing full-integration consistent (CF), lumped (LF) and higher-order (HF) mass
matrix formulations.

grated, consistent, lumped and higher-order mass matrix formulations. The
consistent mass formulation (CF) introduces leading phase errors while the
lumped (LF) and higher-order (HF) methods exhibit strictly lagging phase
errors. Additionally, both the LF and HF methods demonstrate lagging
group speed for all wavelengths considered while the CF group speed is lead-
ing for 2�x=� � 0:85.

Figure 5.5 shows the phase and group speeds for the one-dimensional,
second-order wave RKPM semi-discretization using the CF, CT, LF and HF
formulations. Relative to the FE results of Figure 5.4, the consistent mass
matrix (CF) provides better phase and group speed. Surprisingly, the trape-
zoidal mass formulation (CT) yields zero phase speed for 2�x wavelengths,
i.e., these wavelengths are stationary on the grid. Additionally, the CT for-
mulation results in large, lagging group errors for wavelengths shorter than
3�x. In contrast, the FE semi-discretizations do not yield any negative group
speeds.

Employing the 5% phase error criterion introduced earlier, the FE-HF
method requires approximately 4 nodes per wavelength while only 3 particles
are required for the RKPM-CF method. As with the RKPM discretization
of the �rst-order wave equation, the lumped and higher-order formulations
introduce severe lagging phase and group errors relative to both the FE
counterparts and the CT and CF mass matrices.
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Figure 5.5: One-dimensional phase (a) and group (b) speed results for the
second-order wave equation, Reproducing Kernel Particle semi-discretization
employing the full-integration, consistent (CF), lumped (LF), higher-order
(HF) and trapezoidal integration consistent (CT) mass matrix formulations.

5.2.2 2-D Hyperbolic Equations

This section presents the phase speed results for the semi-discrete, two-
dimensional, hyperbolic equations. Results are plotted as functions of the
propagation angle, �, and non-dimensional wave number. For this analy-
sis, the particle spacing is uniform with, �y=�x = 1. As with the one-
dimensional analyses, a re�nement parameter of r = 1:14 based upon a min-
imum energy error is used in the RKPM formulation. In order to highlight
the directional dependence of the phase error, the phase speed is presented
with both polar and Cartesian plots. The phase speed results exhibit angu-
lar symmetry about propagation directions, �, that are multiples of �=4 as
a result of the imposed uniform spacing of particles. However, the data is
presented for 0 � � � 2� for the sake of clarity.

First-Order Wave Equation

Phase speed plots for the semi-discrete �rst-order wave equation using the
fully integrated bi-linear �nite element and a consistent mass matrix are
shown in Figure 5.6. The polar plot of Figure 5.6a shows phase speed as
a function of direction, �, for several values of non-dimensional wavelength,
2�x=�. The non-circular phase speed contours emphasize the anisotropic
nature of wave propagation on the discrete mesh. Figure 5.6b presents the
results of Figure 5.6a at �ve propagation angles, �. It is apparent from Figure
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Figure 5.6: Polar (a) and Cartesian (b) plots of the phase speed for the FE
semi-discretization of the two-dimensional, �rst-order wave equation employ-
ing a full-integration, consistent mass matrix formulation (CF).

5.6 that a minimum error in phase speed occurs when the wave propagation
direction is �=4 from the x-axis. It is also apparent that the anisotropy
becomes more pronounced for shorter wavelengths, i.e., 2�x=� > 0:4 (cf.
Figure 5.6a).

Phase speed results for the fully integrated \bi-linear" reproducing ker-
nel particle method using a consistent mass matrix are shown in Figure 5.7.
As with the FE formulation, the RKPM semi-discretization leads to strictly
lagging phase speed with minimum phase speed errors occurring for � = �=4.
However, unlike FE, RKPM shows negligible phase error in this direction.
Further, relative to the �nite element method, the anisotropic behavior has
been signi�cantly reduced, with wave propagation being e�ectively indepen-
dent of wavelength and propagation direction for 2�x=� � 0:8, i.e., for
wavelengths greater than about 2� 3�x.

Figure 5.8 shows polar and Cartesian plots of the phase speed for the
\bi-linear" RKPM formulation using trapezoidal integration and a consis-
tent mass matrix. Again, the phase speed is lagging and anisotropic, with
minimum errors occurring in the � = �=4 directions. Although the phase
speed appears anisotropic for short wavelength signals, this formulation de-
livers nearly isotropic wave propagation for 2�x=� � 0:6, i.e., wavelengths
greater than 3� 4�x.
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Figure 5.7: Polar (a) and Cartesian (b) plots of the phase speed for the
RKPM semi-discretization of the two-dimensional, �rst-order wave equation
with full-integration, and a consistent mass matrix (CF).
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Figure 5.9: Polar (a) and Cartesian (b) plots of the phase speed for the FE
semi-discretization of the two-dimensional, second-order wave equation using
a full-integration, consistent mass matrix formulation (CF).

Second-Order Wave Equation

Figure 5.9 shows phase speed results for the second-order wave semi-discretization
using a fully integrated bi-linear �nite element method with a consistent mass
matrix. The results indicate that the �nite element formulation introduces
strictly leading phase errors. The �nite element semi-discretization results
in anisotropic wave propagation, with a minimum phase error occurring in
the � = �=4 propagation directions. However, the anisotropy is not as pro-
nounced as for the �rst-order equation (cf. Figure 5.6)

The fully integrated \bi-linear" RKPM semi-discretization (consistent
mass matrix) yields almost negligible phase errors as shown in Figure 5.10.
Further, as phase errors are quite small for all �, wave propagation is nearly
perfectly isotropic. Some slight leading phase speed errors are evident for
wavelengths approaching 2�x. However, these errors are less than 2.5% with
a minimum in phase error occurring in the � = �=4 propagation directions.

Finally, Figure 5.11 shows the phase speed results for \bi-linear" RKPM
semi-discretization using trapezoidal integration with a consistent mass ma-
trix. Unlike the fully integrated results, anisotropic dispersion errors are
quite evident for 2�x=� > 0:6. However, for 2�x=� � 0:6 phase errors are
negligible and are signi�cantly better than for the FE case (cf. Figure 5.9).
Similar to the fully-integrated RKPM semi-discretization, the phase errors
are minimized in the �=4 propagation directions, but with nearly perfect
phase speed for wavelengths longer than 3� 4�x.
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Figure 5.10: Polar (a) and Cartesian (b) plots of the phase speed for the
RKPM semi-discretization of the two-dimensional, second-order wave equa-
tion using full-integration and a consistent mass matrix (CF).
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Remark 15 During the course of analyzing the results from the von Neu-
mann analysis it was observed that the use of trapezoidal integration results
in identical dispersion relations for the �rst and second-order wave equations
with a consistent mass matrix. The fact that the discrete spectrum or sym-
bol101 for the �rst and second-order wave equations are identical may be seen
clearly in Figures 5.3 and 5.5 for the one-dimensional case. Similarly, for the
two-dimensional case, the phase speed shown for the �rst-order wave equation
in Figure 5.8 is identical to the phase speed shown in Figure 5.11.

Similar behavior has been noted by Vichnevetsky and Bowles101 when a
second-order central di�erence approximation is applied to both the �rst and
second-order wave equation. In this situation, the semi-discrete �rst-order
equation is a consistent representation of the second-order wave equation. In
the case of RKPM, a similar result may be obtained in the one-dimensional
case for a re�nement parameter, r = 1=2. However, we have been unable
to verify this behavior analytically for r = 1:14. Regardless of this, numer-
ical experiments (cf. Figures 5.3, 5.5, 5.8, and 5.11) have veri�ed that the
discrete spectrum is identical for the two model hyperbolic equations when
particle integration is used.

5.2.3 Parabolic Equation

The apparent di�usivity results are presented in Figure 5.12 for several
RKPM semi-discretization techniques and a range of re�nement parameters
for the parabolic partial di�erential equation.

Figure 5.12 (a) shows the apparent di�usivity for the consistent mass,
fully integrated formulation (CF) for re�nement parameters 0:5; 0:75; 1:0; 1:14.
Here, r = 0:5 corresponds to the usual �nite element formulation with a con-
sistent mass matrix and demonstrates that the shorter-wavelength modes will
di�use up to 40% faster than the long wavelength modes. As the re�nement
parameter approaches the minimum energy error value of 1:14, this e�ect is
minimized with only a small error introduced for 2�x=� � 0:9.

Figure 5.12 (b) shows the apparent di�usivity for RKPM using particle
integration and a consistent mass matrix. Once again, the minimum energy
error re�nement parameter of 1:14 yields the best performance with nearly
constant di�usivity up to 4�x wavelengths. Surprisingly, all three re�nement
parameters result in apparent di�usivities that are zero for 2�x wavelengths.
Thus, any short-wavelength modes will not di�use at all, but will persist on
the grid.
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Figure 5.12: Parabolic PDE apparent di�usivity for the (a) fully inte-
grated consistent mass (b) trapezoidal integration consistent mass (c) fully-
integrated higher order mass and (d) fully-integrated lumped mass RKPM
semi-discretizations.

Similar results are shown in Figure 5.12 when the lumped or higher-order
mass matrix is used with a re�nement parameter of 1:14. For the �nite
element formulation, i.e., r = 0:5, the apparent di�usivity is lagging for all
wavelengths, but remains �nite in the limit of 2�x wavelengths. As in the
case of the hyperbolic PDEs, the higher-order mass matrix yields the best
overall behavior across the entire discrete spectrum. Unfortunately, any form
of mass lumping procedure seems to severely deteriorate the performance of
the RKPM formulation.

5.3 Summary

The results of the analyses presented here indicate that, for the formula-
tions considered, the consistent mass RKPM-CF semi-discretizations display
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better dispersion properties than the �nite element method with similar con-
sistency constraints. In a one-dimensional sense, phase errors of less than 5%
are ensured with 3 to 4 particles per wavelength with RKPM while the FE
formulations require 4 to 5 nodes. Incredibly, RKPM semi-discretizations of
the second-order wave equation require only 3 particles per wavelength (the
Nyquist limit) for phase errors of less than 2.5%. In addition, wave propaga-
tion with the consistent mass RKPM formulation in two-dimensions is nearly
isotropic in terms of angular dependence of the phase speed and in terms of
the amplitude of the phase errors.

While the consistent mass matrix RKPM formulations perform quite well,
the lumped and higher order mass formulations introduce severely lagging
phase and group speeds. Thus, the performance of these formulations is quite
poor relative to their �nite element counterparts.

Finally, the consistent mass RKPM results indicate that minimal losses
in phase and group speed error result when particle integration of the ma-
trices is employed in place of full (Gauss) quadrature. With the sacri�ce of
negative group speeds and a slight increase in phase speed errors, the use of
particle integration may signi�cantly reduce computational cost by reducing
the number of quadrature points needed. Further, the method should be
simpler to implement as the background integration mesh can be eliminated.
However, further direct testing with particle integration is required.



Chapter 6

Summary and Conclusions

In the search for an optimal basis for performing multi-scale simulations, the
following shopping list of characteristics was developed as the goal for the
ideal multi-scale basis.

� Compact support.

� Low order, e.g., linear, for computational e�ciency.

� Consistent reproduction of polynomials, e.g., reproduce f1; x; y; xyg in
two-dimensions.

� Nodal, i.e., possesses the Kronecker delta property.

� Hierarchical: V1 = V0 �W0.

� Element based { compatible with isoparametric elements.

� Analytic expressions for the basis elements � and  .

� Easy treatment of boundary conditions.

� Good numerical performance, e.g., dispersion characteristics, trunca-
tion error, etc.

� Appropriate for both Eulerian and Lagrangian computations.

� Computationally e�cient decomposition and reconstruction of �elds.

� Extensible to multiple spatial dimensions.

127
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Based on these characteristics and the results of this exploratory e�ort
the following conclusions are drawn.

1. The DGHM (and related) multi-wavelets are not a good choice for a
multi-scale basis because they are relatively di�cult to compute with
and do not extend to multiple dimensional isoparametric elements. In
addition, the DGHM element delivers the performance of a linear ele-
ment at the cost of a quadratic element with inferior dispersive behav-
ior.

2. The Schauder basis, and the 1-D and 2-D multi-scale elements, are pro-
totypical of what the ideal multi-scale basis should be. Unfortunately,
the storage and computational cost associated with the �nger-diagonal
operators from this type of basis is a signi�cant penalty. However, the
use of ad-hoc lumping procedures ameliorates this problem and o�ers
the potential for the development of fast, simple preconditioners. Cur-
rently, the real value of the multi-scale elements lies in the application
to elliptic problems.

3. The numerical performance of the reproducing kernel particle method
makes it a viable candidate for both Eulerian and Lagrangian computa-
tions for a broad range of physical problems. However, the integration
of wavelets with the multiple scale window functions remains a topic
of current research. This research is currently being addressed by Pro-
fessor Wing Kam Liu and his colleagues at Northwestern University.

4. As demonstrated in the discussion of the \semi-hat" bases, it is di�-
cult to construct a basis that is stable in both L

2 and in H1, i.e., for
all possible combinations of mass and sti�ness operators. The applica-
tion of wavelet bases that have been customized for a speci�c partial
di�erential equation remains an open topic of active research.

5. The use of wavelet bases for the solution of partial di�erential equa-
tions remains a research topic that is centered squarely in the mathe-
matics community at this time. Hierarchical solution procedures that
use wavelets tailored to the physical problem appear to be the most
viable candidates for using wavelet bases.
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Recommendations for further work

1. At this time, the multi-scale elements are the best choice for a \wavelet"
basis that can be implemented in existing �nite element codes. The
development of a preconditioner based upon the multi-scale element
would be of great value in applications such as time-dependent incom-
pressible ow, quasi-static electro-magnetics, as well as the obvious
application to conduction problems, where there is a dominant elliptic
component. The row-column lumping procedure combined with the
element-based reconstruction algorithm can yield a computationally
e�cient preconditioner or multi-level solution scheme.

2. Another potential application for the 1-D multi-scale element is in
the one-dimensional turbulence (ODT) sub-grid scale modeling e�orts.
Here, the implementation of a fast solution to the 1-D parabolic prob-
lem could aid in reducing the computational complexity of this ap-
proach.

3. The application of RKPM to high-rate, large-deformation physical prob-
lems has been demonstrated, but there are still many questions to be
answered. Of particular concern here is the application to shock dom-
inated problems and the construction of a viable arti�cial viscosity
treatment. There is a clear need for continued re�nement of search
algorithms for the numerical integration procedures in RKPM.

4. The implementation of two-scale decomposition strategies based upon
the �nite-domain convolution kernel of RKPM promises to yield �l-
tering strategies that can be used in a stand-alone mode for post-
processing simulation results. In addition, this type of �lter possesses
consistency properties that make it a viable candidate for explicit �l-
tering in large eddy simulations where a dynamic sub-grid scale model
is used.



130 CHAPTER 6. SUMMARY AND CONCLUSIONS



Bibliography

[1] K. Amartunga and J. R. Williams, Wavelet-galerkin solutions for
one-dimensional partial di�erential equations, International Journal for
Numerical Methods in Engineering, 37 (1994), pp. 2703{2716.

[2] A. Averbuch, G. Belykin, R. Coifman, and M. Israeli, Multi-
scale inversion of elliptic operators, Signal and Image Representation
in Combined Spaces, (1995). (preprint).

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and
P. Krysl, Meshless methods: An overview and recent developments,
Computer Methods in Applied Mechanics and Engineering, 139 (1996),
pp. 3{47.

[4] T. Belytschko and R. Mullen, On dispersive properties of �nite
element solutions, in Modern Problems in Elastic Wave Propagation,
J. Milovitz and J. D. Achenbach, eds., International Union of Theoret-
ical and Applied Mechanics, John Wiley and Sons, 1978, pp. 67{82.

[5] G. Beylkin, Wavelets, multiresolution analysis and fast numerical
algorithms, INRIA lecturs, (1991).

[6] , On the representation of operators in bases of compactly supported
wavelets, SIAM Journal on Numerical Analysis, 6 (1992), pp. 1716{
1740.

[7] , On the representation of operators in bases of compactly supported
wavelets, SIAM Journal on Numerical Analysis, 6 (1992), pp. 1716{
1740.

131



132 BIBLIOGRAPHY

[8] , On the adaptive numerical solution of nonlinear par-
tial di�erential equations, preprint, (1993). (ftp://amath-
ftp.colorado.edu/pub/wavelets/papers/wavelets for PDEs.ps.Z).

[9] , Wavelets and fast numerical methods, Proceedings of Symposia
in Applied Mathematics, 47 (1993), pp. 89{117.

[10] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet trans-
forms and numerical algorithms i., preprint, (unknown).

[11] G. Beylkin and N. Coult, A multiresolution strategy for reduction
of elliptic pde's and eigenvalue problems, Applied and Computational
Harmonic Analysis, 5 (1998), pp. 129{155.

[12] J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel
preconditioners, Mathematics of Computation, 55 (1982), pp. 1{22.

[13] W. Cai and J. Wang, Adaptive multiresolution collocation methods
for initial boundary value problems of nonlinear pdes, SIAM Journal
on Numerical Analysis, 33 (1996), pp. 937{970.

[14] W. Cai and J. Z. Wang, Adaptive wavelet collocation methods for
initial value boundary problems of nonlinear pde's, Tech. Rep. ICASE
Report No. 93-48, Institute for Computer Applications in Science and
Engineering, July 1993.

[15] W. Cai and W. Zhang, An adaptive spline wavelet adi (sw-adi)
method for two-dimensional reaction-di�usion equations, to appear in
Journal of Computational Physics, (1997).

[16] P. Charton and V. Perrier, A pseudo-wavelet scheme for
the two-dimensional navier-stokes equations, tech. rep., Laborato-
rie de Meteorologie Dyanmique du CNRS, Paris, France, 1996.
(ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/ns.ps.Z).

[17] J.-S. Chen, S. Yoon, H.-P. Wang, and W. K. Liu, An improved
reproducing kernel particle method for nearly incompressible hyperelas-
tic solids, submitted to Computer Methods in Applied Mechanics and
Engineering, (1997).



BIBLIOGRAPHY 133

[18] Y. Chen, R. A. Uras, and W. K. Liu, Enrichment of the �-
nite element method with reproducing kernel particle method, in Joint
ASME/JSME pressure vessels and piping conference, ASME/JSME,
July 1995.

[19] M. A. Christon, The inuence of the mass matrix on the disper-
sive nature of the semi-discrete, second-order wave equation, Computer
Methods in Applied Mechanics and Engineering, (accepted for publi-
cation, June, 1998). (Sandia SAND95-1979J).

[20] C. K. Chui, Wavelets: A Mathematical Tool for Signal Analysis, Soci-
ety for Industrial and Applied Mathematis, Philadelphia, Pennsylvania,
1997.

[21] A. Cohen and R. Masson,Wavelet methods for second order elliptic
problems, preconditioning and adaptivity, preprint, (1997).

[22] S. Dahlke and A. Kunoth, Biorthogonal wavelets and multigrid,
Tech. Rep. 84, Institute for Geometry and Applied Mathematics {
RWTH Aachen, Aachen, Germany, April 1993.

[23] S. Dahlke and I. Weinreich, Wavelet-galerkin methods: An
adapted biorthogonal wavelet basis, Contructive Approximation, 9
(1993), pp. 237{262.

[24] S. Dahlke and I. Weinreich, Wavelet-galerkin methods: An
adapted biorthogonal wavelet basis, Constr. Approx., 9 (1993), pp. 237{
262.

[25] , Wavelet bases adapted to pseudo-di�erential operators, Applied
Comput. Harmonic Anal., 1 (1994), pp. 267{283.

[26] W. Dahmen, Stability of multiscale transformations, J. Fourier Anal.
Appl., 2 (1996), pp. 341{362.

[27] , Wavelet and multiscale methods for operator equations, Acta Nu-
merica, (1997), pp. 55{228.

[28] W. Dahmen and A. Kunoth, Multilevel preconditioning, Numerishe
Mathematik, 63 (1992), pp. 314{344.



134 BIBLIOGRAPHY

[29] W. Dahmen, A. Kunoth, and K. Urban, A wavelet-galerkin
method for the stokes equations, Tech. Rep. 111, Institute for Geometry
and Applied Mathematics, RWTH Aachen, Aachen, Germany, Febru-
ary 1995. (ftp://ftp.igpm.rwth-aachen.de/pub/urban/igpm 111.tar.Z).

[30] W. Dahmen, A. Kurdilla, and P. Oswald, eds., Multiscale
wavelet methods for partial di�erential equations, vol. 6, Academic
Press, San Diego, California, 1997.

[31] W. Dahmen and C. A. Micchelli, Using the re�nement equation
for evaluating integrals of wavelets, SIAM Journal on Numerical Anal-
ysis, 30 (1993).

[32] , Biorthogonal wavelet expansions, Tech. Rep. 114, Institute for
Geometry and Applied Mathematics { RWTH Aachen, Aachen, Ger-
many, May 1995.

[33] W. Dahmen, S. Muller, and T. Schlinkmann, Multigrid and
multiscale decompositions, Tech. Rep. 147, Institute for Geometry and
Applied Mathematics { RWTH Aachen, Aachen, Germany, September
1997.

[34] W. Dahmen and R. Stevenson, Element-by-element construction
of wavelets satisfying stability and moment conditions, submitted to
SIAM journal on Numerical Analysis, (1997). (see also Report No.
9725, Mathematics Department, University of Nijmegen).

[35] I. Daubechies, Orthonormal bases of compactly supported wavelets,
Communications on Pure and Applied Mathematics, XLI (1988),
pp. 909{996.

[36] , Ten lectures on wavelets, SIAM, Philadelphia, Pennsylvania,
1992.

[37] G. Donovan, J. S. Geronimo, and D. P. Hardin, Fractal func-
tions, splines intertwining multiresolution analysis and wavelets, in
Proceedings of SPIE, San Diego, California, July 1994, SPIE, pp. 238{
243.



BIBLIOGRAPHY 135

[38] G. C. Donovan, J. S. Geronimo, D. P. Hardin, and P. R.

Massopust, Construction of orthogonal wavelets using fractal inter-
polation functions, SIAM Journal on Mathematical Analysis, 27 (1996),
pp. 1158{1192.

[39] J. Frohlich and K. Schneider, An adaptive wavelet-vaguelette al-
gorithm for the solution of pdes, Journal of Computational Physics, 130
(1997), pp. 174{190.

[40] J. S. Geronimo, D. P. Hardin, and P. R. Massopust, Fractal
functions and wavelet expansions based on several scaling functions,
Journal of Approximation Theory, 78 (1994), pp. 373{401.

[41] R. Glowinski, W. Lawton, M. Ravachol, and E. Tenenbaum,
Wavelet solutions of linear and nonlinear elliptic, parabolic and hyper-
bolic problems in one space dimension, in Computing Methods in Ap-
plied Sciences and Engineering, R. Glowinski, ed., Philadelphia, Penn-
sylvania, January 1990, SIAM, SIAM, pp. 55{120.

[42] R. Glowinski, T.-W. Pan, J. Raymond O. Wells, and

X. Zhou, Wavelet and �nite element solutions for the dirichlet prob-
lem, (ftp://cml.rice.edu/pub/reports/9201.ps.Z) TR92-01, Computa-
tional Mathematics Laboratory, Rice University, Houston, Texas, 1992.

[43] R. Glowinski, A. Rieder, R. O. Wells, and X. Zhou, A
wavelet multigrid preconditioner for dirichlet boundary-value prob-
lems in general domains, Tech. Rep. TR93-06, Computational
Mathematics Laboratory, Rice University, Houston, Texas, 1994.
(ftp://cml.rice.edu/pub/reports/9306.ps.Z).

[44] A. Graps, An introduction to wavelets, IEEE Computational Science
and Engineering, 2 (1995), pp. 1{18.

[45] P. M. Gresho, S. T. Chan, R. L. Lee, and C. D. Upson, A
modi�ed �nite element method for solving the time-dependent, incom-
pressible navier-stokes equations. part 1: Theory, International Journal
for Numerical Methods in Fluids, 4 (1984), pp. 557{598.

[46] P. M. Gresho and R. L. Sani, Incompressible ow and the �nite
elmeent method, Advection-di�usion and isothermal laminar ow, John
Wiley & Sons, Chicester, England, 1998.



136 BIBLIOGRAPHY

[47] A. Grossmann and J. Morlet, Decomposition of hardy functions
into square integrable wavelets of constant shape, SIAM Journal on
Mathematical Analsysis, 15 (1984), pp. 723{736.

[48] W. Hackbusch, The frequency decomposition multi-grid method, part
i: Application to anisotropic equations, Numerische Mathematik, 56
(1992), pp. 229{245.

[49] A. Harten, Multi-resolution algorithms for the numerical solution of
hyperbolic conservation laws, Communications on Pure and Applied
Mathematics, XLVIII (1995), pp. 1305{1342.

[50] M. Holmstrom, Solving hyperbolic pdes using interpolating wavelets,
Tech. Rep. 189/1996, Uppsala University { Department of Scienti�c
Computing, Uppsala, Sweden, December 1996.

[51] T. J. R. Hughes, The Finite Element Method, Prentice-Hall, Inc.,
Englewood Cli�s, New Jersey, 1987.

[52] S. Jaffard, Wavelet methods for fast resolution of elliptic problems,
SIAM Journal on Numerical Analysis, 29 (1992), pp. 956{986.

[53] L. Jameson, On the wavelet optimized �nite di�erence method, Tech.
Rep. NASA CR-191601, ICASE Report No. 94-9, Institute for Com-
puter Applications in Science and Engineering, NASA Langley Re-
search Center, Hampton, VA, March 1994.

[54] B. Jawerth and W. Sweldens, An overview of wavelet based mul-
tiresolution analyses, preprint, (1997).

[55] S. Jun, W. K. Liu, and T. Belytschko, Explicit reproducing kernel
particle methods for large deformation problems, International Journal
for Numerical Methods in Engineering, (1997).

[56] J. M. Keiser, On I. Wavelet based approach to numerical solution
of nonlinear partial di�erential equations and II. Nonlinear waves in
fully discrete dynamical systems, PhD thesis, University of Colorado,
Boulder, Colorado, 1995.

[57] J. Ko, A. J. Kurdila, and P. Oswald, Multiscale Wavelet Meth-
ods for PDEs, Academic Press, Inc., 1996, ch. Scaling Function and



BIBLIOGRAPHY 137

Wavelet Preconditioners for Second Order Elliptic Problems, pp. 413{
438.

[58] J. Ko, A. J. Kurdila, and M. P. Pilant, Triangular wavelet based
�nite elements via multivalued scaling functions, preprint, (1994).

[59] A. Kunoth, Multilevel preconditioning { appending boundary condi-
tions by lagrange multipliers, tech. rep., Institute for Geometry and
Applied Mathematics {RWTH - Aachen, Aachen, Germany, December
1994.

[60] A. Latto and H. L. Resnikoff, The evaluation of connection coef-
�cients of compactly supported wavelets, Tech. Rep. AD910798, Aware,
Inc., Cambgridge, Massachussets, August 1996.

[61] A. Latto and E. Tenenbaum, Compactly supported wavelets and
the numerical solution of burger's equation, C. R. Academy of Sciences,
311 (1990), pp. 903{909.

[62] S. Li and W. K. Liu, Moving least square reproducing kernel method
part ii: Fourier analysis, Computer Methods in Applied Mechanics and
Engineering, 139 (1996), pp. 159{193.

[63] , Synchronized reproducing kernel interpolant via multiple wavelet
expansion, Computational Mechanics, (Accepted for publication
March, 1997).

[64] , Moving least square reproducing kernel method (iii): Wavelet
packet and its applications, Computer Methods in Applied Mechanics,
(submitted April, 1997).

[65] W. K. Liu and Y. Chen, Wavelet and multiple scale reproducing
kernel methods, International Journal for Numerical Methods in Fluids,
21 (1995), pp. 901{931.

[66] W. K. Liu, Y. Chen, C. T. Chang, and T. Belytschko, Ad-
vances in multiple scale kernel particle methods, Computational Me-
chanics, 18 (1996), pp. 73{111.



138 BIBLIOGRAPHY

[67] W. K. Liu, Y. Chen, J. S. Chen, T. Belytschko, C. Pan, R. A.

Curas, and C. T. Chang, Overview and applications of the repro-
ducing kernel particle methods, Archives of Computational Methods in
Engineering, 3 (1996), pp. 3{80.

[68] W. K. Liu, Y. Chen, R. A. Uras, and C. T. Chang, Generalized
multiple scale reproducing kernel particle methods, Computer Methods
in Applied Mechanics and Engineering, 139 (1996), pp. 91{157.

[69] W. K. Liu and S. Jun, Multiple scale reproducing kernel particle
methods for large deformation problems, International Journal for Nu-
merical Methods in Engineering, (submitted 1997).

[70] W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Repro-
ducing kernel particle methods for structural dynamics, International
Journal for Numerical Methods in Engineering, 38 (1995), pp. 1655{
1679.

[71] W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle
methods, International Journal for Numerical Methods in Fluids, 20
(1995), pp. 1081{1106.

[72] W. K. Liu, S. Li, and T. Belytschko, Moving least square re-
producing kernel methods (i) methodology and convergence, Computer
Methods in Applied Mechanics and Engineering, (Accepted for publi-
cation - June, 1996).

[73] W. K. Liu and C. Oberste-Brandenburg, Reproducing kernel
and wavelet particle methods, in Aerospace Structures: Nonlinear dy-
namics and system response, J. P. Cusumano, C. Peirre, and S. T. Wu,
eds., New York, New York, November 1993, ASME Winter Annual
Meeting, American Society of Mechanical Engineers, pp. 39{55.

[74] S. G. Mallat, Multiresolution approximations and wavelet orthonor-
mal bases of l2(r), Transactions of the American Mathematical Society,
315 (1989), pp. 69{87.

[75] P. R. Massopust, Fractal functions, fractal surfaces and wavelets,
Academic Press, San Diego, California, 1994.



BIBLIOGRAPHY 139

[76] , Lecture notes for multiwavelets and their application. presented
at Allegheny section of the MAA, June 1997.

[77] Y. Meyer, Wavelets Algorithms and Applications, SIAM, Philadel-
phia, Pennsylvania, 1993.

[78] P. Monasse and V. Perrier, Orthonormal wavelet bases adapted
for partial di�erential equations with boundary conditions, tech. rep.,
Laboratore de Meteorlogie Dynamique, Paris, Paris, France, October
1995.

[79] J. Morlet, NATO ASI Series, Issues in Acoustic Signal/Image Pro-
cessing and Recognition, vol. 1, Springer, Berlin, 1983, ch. Sampling
theory and wave propagation, pp. 233{261.

[80] J. Morlet, G. Arens, I. Fourgeau, and D. Giard, Wave prop-
agation and sampling theory, Geophys., 47 (1982), pp. 203{236.

[81] P. Oswald, Multilevel �nite element approximation, B. G. Teubner,
Stuttgart, Germany, 1994, ch. 4. Applications to multilevel methods,
pp. 70{115.

[82] V. Perrier and P. Charton, Towards a wavelet based numeri-
cal scheme for the two-dimensional navier-stokes equations, tech. rep.,
Laboratorie de Meteorologie Dyanmique du CNRS, Paris, France, 1995.
(ftp://ftp.lmd.ens.fr/MFGA/pub/wavelets/iciam95.ps.Z).

[83] G. Plonka and V. Strela, Mathematical Methods for Curves and
Surfaces II, Vanderbilt University Press, Nashville, Tennessee, 1998,
ch. From wavelets to multiwavelets, pp. 375{399.

[84] S. Qian and J. Weiss,Wavelets and the numerical solution of partial
di�erential equations, Journal of Computational Physics, 106 (1993),
pp. 155{175.

[85] A. Rieder, R. O. Wells, and X. Zhou, A wavelet approach to
robust multilevel solvers for anisotropic elliptic problems, Tech. Rep.
TR93-07, Computational Mathematics Laboratory, Rice University,
Houston, Texas, 1993. (ftp://cml.rice.edu/pub/reports/9307.ps.Z).



140 BIBLIOGRAPHY

[86] , On the wavelet frequency decomposition method, Tech. Rep.
TR94-13, Computational Mathematics Laboratory, Rice University,
Houston, Texas, 1994. (ftp://cml.rice.edu/pub/reports/9413.ps.Z).

[87] D. W. Roach, Multiwavelet pre�lters: orthogonal pre�lters preserv-
ing approximation order p <= 3, PhD thesis, Vanderbilt University,
Nashville, Tennesee, May 1997.

[88] G. Strang, Wavelets and dilation equations: a brief introduction,
SIAM Review, 31 (1989), pp. 614{627.

[89] , Wavelets, American Scientist, 82 (1994), pp. 250{255.

[90] V. Strela,Multiwavelets: Theory and Applications, PhD thesis, Mas-
sachusetts Institute of Technology, Boston, Massachusetts, June 1996.

[91] V. Strela and G. Strang, Finite element multiwavelets, in Maratea
NATO Conference, NATO, Kluwer, 1995.

[92] V. Strela and G. Strang, Pseudo-biorthogonal mul-
tiwavelets and �nite elements, preprint, (1997). (http :
==pascal:dartmouth:edu= strela).

[93] R. S. Strichartz, How to make wavelets, The American Mathemat-
ical Monthly, 100 (1993), pp. 539{556.

[94] W. Sweldens, Compactly supported wavelets which are biorthogonal
with respect to a weighted inner product, preprint, (1996).

[95] C. H. Tong, T. F. Chan, and C. C. J. Kuo, A domain decomposi-
tion preconditioner base on a change to a multilevel nodal basis, SIAM
Journal on Scienti�c and Statistical Computing, 12 (1991).

[96] R. A. Uras, C. T. Chang, Y. Chen, and W. K. Liu, Multiresolu-
tion reproducing kernel particle methods in acoustics, Journal of Com-
putational Acoustics, (Accepted for publication, 1996).

[97] K. Urban, A wavelet-galerkin algorithm for the driven-cavity-
stokes-problem in two space dimensions, Tech. Rep. 106, Insti-
tute for Geometry and Applied Mathematics, RWTH Aachen,
Aachen, Germany, September 1994. (ftp://ftp.igpm.rwth-
aachen.de/pub/urban/igpm 106.tar.Z).



BIBLIOGRAPHY 141

[98] O. V. Vasilyev and S. Paolucci, A dynamically adaptive multilevel
wavelet collocation method for solving partial di�erential equations in a
�nite domain, Journal of Computational Physics, 125 (1996), pp. 498{
512.

[99] , A fast adaptive wavelet collocation algorithm for multidimen-
sional pdes, Journal of Computational Physics, 138 (1997), pp. 16{56.

[100] R. Vichnevetsky, Wave propagation and reection in irregular grid
for hyperbolic equations, Tech. Rep. MAE-1713, Department of Me-
chanical and Aerospace Engineering, Princeton University, July 1985.

[101] R. Vichnevetsky and J. B. Bowles, Fourier Analysis of Numeri-
cal Approximations of Hyperbolic Equations, SIAM, Philadelphia, PA,
1982.

[102] G. G. Walter, Orthogonal �nite element multiwavelets, preprint
{ Mathematical Science Department, University of Wisconsin-
Milwaukee, (1997).

[103] J. Weiss, The numerical resolution of turbulence and boundary value
problems using the wavelet-galerkin method, preprint, (1997).

[104] R. O. Wells and X. Zhou, Representing the geometry of domains by
wavelets with applications to di�erential equations, Tech. Rep. TR92-
14, Computational Mathematics Laboratory, Rice University, Houston,
Texas, 1992. (ftp://cml.rice.edu/pub/reports/9214.ps.Z).

[105] , Wavelet solutions for the dirichlet problem, Tech. Rep. TR92-
02, Computational Mathematics Laboratory, Rice University, Houston,
Texas, 1993. (ftp://cml.rice.edu/pub/reports/9202.ps.Z).

[106] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc.,
La Canada, California, 1993.

[107] J. R. Williams and K. Amartunga, Introduction to wavelets in
engineering, International Journal for Numerical Methods in Engineer-
ing, 37 (1994), pp. 2365{2388.

[108] J.-C. Xu and W.-C. Shann, Galerkin-wavelet methods for two-point
boundary value problems, Numerishe Mathematik, 63 (1992), pp. 123{
144.



142

[109] H. Yserentant, On the multi-level splitting of �nite element spaces,
Numerishce Mathematik, 49 (1986), pp. 379{412.

[110] H. Yserentant, On the multi-level splitting of �nite element spaces,
Numerisch Mathematic, 49 (1986), pp. 379{412.

[111] H. Yserentant, Two preconditioners based on the multi-level splitting
of �nite element spaces, Numerische Mathematik, 58 (1990), pp. 163{
184.

[112] O. C. Ziekiewicz, D. W. Kelley, J. Gago, and I. Babuska, The
mathematics of �nite elements and applications IV, Academic Press,
London, England, 1982, ch. Hierarchical �nite element approaches, er-
ror estimates and adaptive re�nement.



143

Distribution

External Distribution:

Prof. Ted Belytschko
Mechanical Engineering Dept.
Northwestern University
2145 Sheridan Road
Evanston, Illinois 60208-3111

Prof. Patrick J. Burns
Mechanical Engineering Dept.
Colorado State University
Ft. Collins, CO 80523

Dr. F. Farassat
NASA Langley Research Center
Mail Stop 460
Hampton, VA 23681-0001

Philip M. Gresho, Ph.D.
Lawrence Livermore National Laboratory
P.O. Box 808, L-262
Livermore, California 94551

Douglas P. Hardin
Mathematics Department
Vanderbilt University
Nashville, TN 37420

Prof. Thomas J. R. Hughes
Division of Applied Mechanics
Durand Building
Room No. 281
Stanford University
Stanford, California 94305-4040

Prof. Wing Kam Liu
Mechanical Engineering Dept.
Northwestern University
2145 Sheridan Road
Evanston, Illinois 60208-3111

Peter R. Massopust
7 S. Acacia Park Circle
The Woodlands, TX 77382

Prof. Philip J. Morris
Department of Aerospace Engineering
The Pennsylvania State University
University Park, PA 16802

Prof. Tayfun Tezduyar
AHPCRC
University of Minnesota
1100 Washington Avenue South
Minneapolis, MN 55415

Prof. Erik Thompson
Civil Engineering Dept.
Colorado State University
Ft. Collins, CO 80523

Prof. Don. H. Tucker
Department of Mathematics
University of Utah
Salt Lake City, UTAH 84112

David W. Roach
Mathematics Department
University of Georgia
Athens, Georgia 30602

Prof. Jiun-Shyan Chen
Department of Mechanical Engineering
The University of Iowa
2133 Engineering Building
Iowa City, Iowa 52242-1527

Internal Distribution:

1 MS 0321 W. J. Camp, 9200
1 MS 0819 J. S. Peery, 9231
1 MS 0820 P. Yarrington, 9232
1 MS 1111 S. Dosanjh, 9221
1 MS 1111 B. Hendrickson, 9226
1 MS 1111 S. Plimpton, 9221
1 MS 0807 R. Haynes, 4918
1 MS 0819 D. Carroll, 9231
1 MS 0819 D. Crawford, 9231
20 MS 0819 M. Christon, 9231
1 MS 0819 E. Hertel, 9231
1 MS 0819 A. Robinson, 9231
1 MS 0819 J. R. Weatherby, 9231
1 MS 0835 T. E. Voth, 9113
2 MS 0825 R. S. Baty, 9115
1 MS 0836 S. P. Burns, 9116
1 MS 0819 T. G. Trucano, 9231
1 MS 1110 D. E. Womble, 9222



144

1 MS 0841 C. M. Hartwig, 9102
1 MS 0632 J. C. Hogan, 5507
1 MS 1207 D. A. Yocky, 5912
1 MS 0841 P. J. Hommert, 9100
1 MS 0828 T. C. Bickel, 9101
1 MS 0828 R. K. Thomas, 9104
1 MS 1111 T. Smith, 9221
1 MS 0865 J. L. Moya, 9105
1 MS 0826 W. L. Hermina, 9111
1 MS 0834 A. C. Ratzel, 9112
1 MS 0835 S. N. Kempka, 9113
1 MS 0827 R. O. Gri�th, 9114
1 MS 0825 W. H. Rutledge, 9115
1 MS 0836 C. W. Peterson, 9116
1 MS 0836 J. H. Strickland, 9116
1 MS 0443 H. S. Morgan, 9117
1 MS 0439 D. R. Martinez, 9234
1 MS 9214 C. H. Tong, 8950

1 MS 0188 D. L. Chavez, LDRD O�ce, 4001

1 MS 9018 Central Technical Files,
8940-2

2 MS 0899 Technical Library, 4916
1 MS 0619 Review & Approval Desk,

15102 for DOE/OSTI


